树的五大性质

博客介绍了树的定义,即有且只有一个根节点和若干互不相交子树。还阐述了深度、叶子节点等专业术语,以及树的五大性质,如二叉树每层节点数、深度与节点数关系等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

树的定义:

有且只有一个称为根的节点,有若干个互不相交的子树(本身也是一棵树)。通俗地说树是由节点和边组成的,每个节点只有一个父节点但可以有多个子节点(根节点例外)


专业术语:


深度:从根节点到最底层节点的层数称之为深度(根节点为第一层)
树的深度:节点最大层次
叶子节点:没有子节点的节点
非终端节点:就是非叶子节点(有子节点)
度:该点子节点的个数
树的度:节点度最大值就是该树的度 

树的五大性质:

性质一:在二叉树的i层上至多有2 i-1个节点(i>=1)至少有1个

性质二:深度为k的二叉树至多有2k-1个节点,至少为k个

性质三:对任何一棵二叉树T,如果终端结点树为n,度为2的结点为n2,度为0的结点为n0 则n0=n2+n1

性质四:具有n个节点的完全二叉树的深度为[log2n]+1向下取整

性质五:如果有一颗有n个节点的完全二叉树的节点按层次序编号,对任一层的节点i(1<=i<=n)有

    1.如果i=1,则节点是二叉树的根,无双亲,如果i>1,则其双亲节点为[i/2],向下取整

    2.如果2i>n那么节点i没有左孩子,否则其左孩子为2i

    3.如果2i+1>n那么节点没有右孩子,否则右孩子为2i+1

  关注公众号,获取免费软件、资料,笔记等。


 

### 图和的数据结构定义与基本性质 #### 的定义与基本性质 是一种非线性的数据结构,由 n (n ≥ 0) 个节点组成的有限集合。如果 n = 0,则称为空;否则,在任何非空中存在唯一的根节点,并且除根节点外的所有其他节点可划分为 m (m > 0) 个互不相交的有限集,这些集合中的每一个都是一棵,被称为子[^1]。 对于二叉而言,其特殊之处在于每个节点至多有两个子——左子和右子,并且这两个子的位置不可随意交换。因此,二叉具有严格的结构性质,具体表现为以下特点: - 每个节点最多拥有两个子; - 左子和右子严格区分位置关系,不能混淆; - 存在五种基本形态:空二叉、单根节点无子、仅有左子、仅有右子以及同时具备左右子的情况[^2][^3]。 关于节点的层次划分,通常规定根节点位于第 1 层,而每增加一层则表示向下深入了一级。整棵的高度即为其最深叶子节点所在层号的最大值[^4]。 #### 图的定义与基本性质 图是由顶点(Vertex)和边(Edge)构成的一种抽象模型 G(V, E),其中 V 表示顶点集合,E 则代表连接这些顶点之间的边集合。依据是否存在方向性,图可以进一步区分为有向图和无向图两大类别: - **无向图**:若任意一条边 e ∈ E 均未指定起点与终点的方向关联,则此图为无向图。 - **有向图**:反之,若有明确规定的起始端到终止端路径指示,则属于有向图范畴。 另外,基于连通性和循环特性还可以细分出更多类型的图形式,比如强连通图、弱连通图、简单图等概念。值得注意的是,某些情况下还会引入权重参数赋予各条边上不同的数值意义,从而形成加权图的概念。 ```python class TreeNode: def __init__(self, value=0, left=None, right=None): self.value = value self.left = left self.right = right def tree_height(node): if node is None: return 0 else: lheight = tree_height(node.left) rheight = tree_height(node.right) if lheight > rheight: return lheight + 1 else: return rheight + 1 ``` 上述代码展示了如何通过递归方法计算一棵给定二叉的高度。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心之所向...

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值