前言
一个需求,在一个稳定的场景当中,实现目标检测计数算法。
任务点:
- 实现目标检测
- 完成对不同类别的物品进行计数
- 在边缘设备完成部署
难点:
- 边缘设备算力不足
- 目标识别精度问题,识别类别在28类
- 实时检测,存在相同物品重复计数的问题,需要进行区分识别,避免重复计数
易点:
- 算力不足可以使用tiny系列的yolo算法,并通过tensorRT进行加速处理
- 摄像头运动轨迹固定,为线性移动过程
方案:
- 采用yolov3-tiny 算法
- 通过卡尔曼滤波实现简单的目标跟踪,记录物品ID和类别即可完成计数
注: 本博文只提供简单思路,以及大致的实现,具体实现细节,甚至是实现语言请自行斟酌。
卡尔曼滤波
这个说来惭愧,去年好像是要写关于卡尔曼滤波的博文来着,好像还写了上篇,下篇没写。没想到,都是有铺垫的,回头还是得补上。
它的原理其实不难,先前我记得还举了什么小车运动的例子。说实