自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2034)
  • 资源 (55)
  • 收藏
  • 关注

原创 从迷之自信到逻辑自信(简版)

而且我们可以看到在追求一种表面性格的同时,对别人的赞美也是过度的追求,这样的一种表现,相信无论是谁都不会非常的欣赏,而且对于大多数人而言,很多时候自信是一种非常正面的表现,但是对自己没有一个正确的认知,盲目自信,会让很多人对这种人有一种不好的看法,让我们看到他们将自尊心扭曲,在追求那种表面荣誉的时候也没有一个正确的度。品牌实体店的业绩可能是真的,但是数据筛选有问题,业绩好的门店才看得上,社区店等所谓的模型,是有问题的,逻辑性不强,没得可复制性;2020年后的疫情是次要因素,对少数优秀门店才是重要因素。

2022-11-29 21:40:13 1664 1

原创 解放思想,实事求是,团结一致向前看

风险提示:投资有风险,出钱要谨慎。阅读提示:请抓住本文的主题,请不要介意本人的写作风格。邓论: 解放思想,实事求是,团结一致向前看 。1978年12月13日一、领悟真知1、腹有诗书气自华。最近几年,技术、管理、创业、职场方面的书,很少读了。文史哲、投资、科学技术,3个方面的书,经常读。2、很久很久以前,在中学考试做题的时候,就有种感觉,数学题、物理题等是有一定规律的,本质就那么多。但是,脑袋瓜子不太行,就是不能做到灵活运用。但是后的但是,我坚决不服输,要...

2021-03-02 23:56:31 1894 6

原创 总结使人进步,遵循事物的发展规律

雷哥的座右铭:总结使人进步,遵循事物的发展规律。长时间的历练,成功和失败的经验,都证明了这点。小时候,学得名句“谦虚使人进步”。但,长大后,发现“谦虚”不是最让人进步的最高效手段,而“总结”是。人在一开始的时候,都是茫然无知的,经过不断实践之后,慢慢才发现了规律,掌握了诀窍。知识、经验、精神财富,通过文字、书本、口口相传,总结记录是手段,书本是形式,最重要的是:总结的道理是真...

2020-05-03 10:55:27 2921 5

原创 35岁危机,如何解?40岁财务自由,可能吗?

新的一年,新的开始。新年伊始,首先需要思考解决的问题是:35岁危机。入行之前,就知道IT互联网界有个说法:程序员是个青春饭,35岁就很难再找到工作了。这几年,思考问题,换了个角度,从悲观者角度去思考。以投资人身份的角度,去分析思考市场看空人士的逻辑,而不总是“永远唱多”。一、程序员35岁危机?1、年龄这是最直观的一条。大多数职业,第一看点就是年龄,18到...

2020-02-01 19:03:34 4316 10

原创 生而为奴,坚决说不

我的立场,更加偏向人民群众一些。长期以来,一直在思考个人的发展问题,群众的民生问题。一、微信朋友圈讨论,群众的危机生而为奴,不是不可能,只会越来越近。等社会发展稳定了,社会资源将被主要的大厂大机构垄断,个体户会以什么样的方式生存。物质上依赖他人,精神上被操纵,还有几个人敢喊出“王侯将相,宁有种乎”。轻则全网封杀,中则住所为牢,重则物理消灭。二、好友问1、你这天天操心...

2019-12-08 15:26:33 906

原创 深入理解MCP架构:智能服务编排、上下文管理与动态路由实战

本文详细介绍了MCP(Model Context Protocol)架构及其在智能服务编排中的实践。MCP通过Client、Host和Server三大组件实现灵活的服务调度,支持上下文管理、权限校验和动态路由。相比传统RPC,MCP更擅长处理多模型协作和复杂业务流,Host组件可智能拆解任务并调用不同Server。文章还展示了多渠道通知的实战案例,说明MCP如何并发调用邮件、短信和钉钉服务并汇总结果。该架构具有灵活性高、可维护性强等优势,特别适用于AI平台、智能对话等场景,技术栈推荐使用Spring Boo

2025-07-03 16:00:45 682

原创 FastGPT私有化部署完整指南

本文详细介绍了FastGPT私有化部署的完整指南,包括环境要求、Docker部署步骤和配置说明。主要内容涵盖:硬件/软件环境要求、Docker Compose部署流程、OpenAI及国产大模型配置、本地模型部署(Ollama/Xinference)、Nginx反向代理设置、数据库管理操作以及常见问题解决方案。部署过程涉及源码获取、环境配置、服务启动等关键步骤,并提供了多种大模型和向量模型的详细配置参数,为私有化部署FastGPT提供了全面的技术指导。

2025-06-29 20:19:13 393

原创 80%的知识库场景选择FastGPT,20%的复杂场景选择Dify

FastGPT与Dify在知识库领域各有优势:FastGPT以易用性胜出,适合快速搭建、技术新手和中小企业,提供直观的拖拽式工作流和友好中文支持;Dify功能更全面,适合复杂业务、专业技术团队和企业级应用,具备高级RAG策略和深度定制能力。实际选择取决于需求场景:80%的知识库应用推荐FastGPT,20%的复杂场景建议Dify。总体而言,FastGPT在大多数知识库场景中更简单高效,而Dify在技术要求高的项目中表现更强大。

2025-06-29 18:19:05 324

原创 RagFlow 更适合企业级深度应用,FastGPT 更适合快速开发和原型验证

RagFlow与FastGPT开发对比摘要(150字) RagFlow定位企业级知识管理,擅长深度文档解析(OCR/表格/合同处理),需技术部署但数据私有;FastGPT侧重快速应用搭建,提供可视化工作流,适合个人开发者快速上线。关键差异:RagFlow在复杂文档处理(如医疗/法律文件)有优势,需API集成;FastGPT简化开发流程,支持拖拽式配置。选择建议:企业级需求选RagFlow,注重数据安全;小型项目/原型开发用FastGPT,实现快速迭代。两者可组合使用,原型阶段用FastGPT验证,正式部署切

2025-06-29 18:10:51 397

原创 RagFlow 是一个基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎,是构建专业知识库问答系统的理想选择!

RagFlow:开源RAG引擎 GitHub最受欢迎RAG项目之一(58.5k星),提供企业级文档智能处理方案。核心优势: 1️⃣ 深度文档解析:支持PDF/Word/Excel等多格式,含OCR和表格识别 2️⃣ 智能分块:可视化分块策略,支持人工干预优化 3️⃣ 多模态支持:处理文本、图像、音频等多数据类型 4️⃣ 一键部署:Docker快速安装(完整版9GB/精简版2GB) 适用场景:企业知识库、智能分析、内容生成等。对比同类工具,RagFlow在文档解析精度和企业级支持上表现突出。 🔗 GitHu

2025-06-29 18:02:38 499

原创 Dify支持5种应用类型,每种都有其独特的应用场景和特点

Dify官方文档介绍了5种应用类型:1)聊天助手(Chatbot):支持多轮对话,适用于客服场景;2)文本生成:单次文本输出,适合翻译、写作;3)Agent:具备推理和工具调用能力,可处理复杂任务;4)Workflow:可视化流程编排,实现业务自动化;5)Chatflow:专为对话设计的流程,支持上下文管理。文档提供了类型对比表和新手选择建议,推荐从简单问答开始逐步进阶。不同类型适用于不同业务需求,开发者可根据场景灵活选择。

2025-06-29 13:15:08 305

原创 宝塔面板,一个非常适合Linux初学者和快速建站需求用户的服务器管理工具

宝塔面板是一款专为Linux/Windows服务器设计的图形化管理工具,由国内团队开发,大幅降低服务器运维门槛。主要功能包括:一键建站、数据库管理(MySQL/MongoDB等)、文件管理、软件安装(Nginx/PHP等)、系统监控等。提供免费版和专业版,适合个人开发者、中小企业快速部署网站和应用。优势在于全中文界面、操作简单、功能集成度高,特别推荐给不熟悉命令行的新手用户。安装仅需一行脚本,但需注意修改默认端口和密码以保障安全。相比cPanel等国外面板更符合国内用户习惯,是入门级服务器管理的理想选择。(

2025-06-29 11:34:05 851

原创 阿里有哪些开源模型,个人学习实用哪个好

这个选择既能让你充分体验大模型的能力,又不会对硬件造成过大压力,是个人学习的最佳起点!

2025-06-29 11:04:57 685

原创 大模型小模型选型手册:开源闭源、国内国外全方位对比

大模型与小模型汇总: 国内外分布: 国外:OpenAI(GPT系列)、Anthropic(Claude)、Google(Gemini)、Meta(Llama) 国内:阿里(Qwen)、深度求索(DeepSeek)、字节(Doubao)、腾讯(Hunyuan) 开源与闭源: 开源:Llama、Mistral、Qwen、DeepSeek 闭源:GPT-4、Claude、Gemini 适合个人的小模型(1B-7B): Qwen1.5B/7B(中文友好) Llama3-8B(通用性强) Mistral-7B(推理优

2025-06-29 10:53:54 1105

原创 Ollama Windows 命令行完整指南

Ollama Windows 命令行使用指南提供了完整的本地AI模型管理方案。主要包含:1) 服务管理基础命令(serve/version/help);2) 模型操作(pull/run/list/rm);3) 高级功能(模型创建/API调用);4) 实用参数(temperature/ctx-size)。推荐从llama3.2、qwen2.5等热门模型入手,支持对话、代码生成、翻译等场景。文档还包含批量操作技巧和故障排查方法,帮助用户快速上手本地AI部署。

2025-06-29 10:38:35 210

原创 AI大模型应用开发完整学习体系

《AI大模型应用开发完整学习体系》课程摘要: 本课程构建系统化的AI大模型开发能力培养体系,包含五大核心模块:1)基础架构与Prompt工程;2)向量数据库/RAG/LangChain等核心技术;3)低代码平台实战;4)算法竞赛进阶;5)全栈项目开发。课程深度覆盖Transformer架构、多模态交互、Agent系统等前沿技术,通过金融/医疗等行业案例实践,培养学员从0到1构建智能系统的能力。技术深化部分详细解析大模型架构选择、生产级RAG系统设计、多智能体协作框架等企业级解决方案,配套阿里云竞赛实战,助力

2025-06-29 10:11:24 368

原创 n8n和dify有什么区别

摘要: n8n与Dify是两款定位不同的开源工具:n8n专注于工作流自动化,支持400+服务集成,适合非AI场景的业务流程优化;Dify则聚焦AI应用开发,提供LLM集成和对话设计能力,适合构建智能客服、内容生成等AI解决方案。技术层面,n8n部署简单(Node.js/Vue),Dify需更多资源(Python/React)。两者均免费开源,但Dify的云服务按Token计费。建议优先学习Dify(市场需求大、AI趋势),再掌握n8n作为补充,组合使用可形成“AI决策+流程自动化”的完整方案,尤其适合创业者

2025-06-28 20:27:16 292

原创 MCP协议全解:大模型时代的能力开放与服务集成最佳实践

MCP协议(模型上下文协议)是大模型和多智能体生态中标准化上下文传递与能力集成的关键协议。它定义了用户输入、系统提示、外部知识、会话状态等结构化字段,支持JSON/Protobuf等序列化方式,实现模型间无缝协作。在应用层面,MCP可标准化企业通知能力(短信/邮件/钉钉),通过统一API接口、服务注册发现机制和认证体系(API Key/OAuth2),让智能客服、RPA流程等场景便捷调用多通道消息服务。该协议具有标准化、易扩展和生态互通优势,成为AI能力开放和多智能体协作的基础设施,推动企业服务智能化升级。

2025-06-25 21:47:27 1072

原创 智能体平台的商业前景与竞争格局分析:金融与企业市场的机遇与挑战

金融机构与企业部署第三方智能体平台在数字化转型中具有现实需求与技术可行性。大模型技术成熟,平台产品支持多样化部署方式,金融、政企等行业存在明确应用场景。市场呈现多元化竞争格局,预计数万家企业将在未来2-3年采用此类平台。盈利模式包括订阅、私有化部署等,企业付费意愿取决于实际价值。相比传统定制软件,智能体平台更具灵活性,是企业智能化升级的重要方向。该商业模式具有发展潜力,但需注重解决行业痛点与安全合规要求。

2025-06-25 21:16:48 995

原创 深入理解提示词工程:原理、分类与实战应用

摘要:提示词工程是优化与大模型交互提示词的技术,包含系统提示词(定义AI角色)和用户提示词(用户指令)。核心内容包括字数限制、参考资料添加、多轮对话设计等。提示词可分类为零样本/小样本、不同任务类型及模块结构。系统提示词在每次请求时拼接生效,确保AI行为一致。未来发展将结合自然语言与编程。掌握提示词设计与调试是提升AI应用效果的关键。

2025-06-25 21:10:09 931

原创 AI大模型解决方案,学习总结

《AI大模型解决方案专家课程体系解析》系统梳理了当前大模型技术体系与应用实践。课程包含三大核心模块:理论基础部分涵盖大模型原理、Prompt工程、RAG技术、Embedding与向量数据库等技术要点;行业案例模块提供28+跨领域实战项目,包含RAG问答系统、智能客服等全链路开发;学习支持部分采用阶梯式教学,配套就业指导。技术补充分享了RAG工程化、Embedding选型等实用经验,建议学习者注重理论实践结合、关注技术前沿。该课程体系完整覆盖大模型开发全流程,适合具备编程基础、寻求AI落地的开发者参考学习,对

2025-06-24 23:34:35 677

原创 《AI大模型应用技术开发工程师》学习总结

摘要: 《AI大模型应用技术开发工程师》课程系统讲解大模型核心技术,包含理论、实战与工程化应用。核心模块涵盖LLM原理、Prompt工程、RAG技术、向量数据库、Agent开发及微调方法,结合企业知识库、智能客服等实战项目。课程强调工程化落地,涉及API设计、性能优化等企业级需求,并提供就业指导与学习社群。建议学习者理论与实践结合,关注技术前沿,注重业务场景适配与工程能力培养。该课程适合具备编程基础、希望深入AI应用开发的从业者,需持续跟踪技术演进以实现技术价值转化。(149字) 注:严格控制在150字内,

2025-06-24 23:27:45 912

原创 《AI大模型核心技术揭秘与商业落地实战》学习内容系统总结

《AI大模型核心技术揭秘与商业落地实战》课程系统梳理了RAG技术、Embedding模型、向量数据库等核心技术,涵盖从理论到商业落地的全流程。课程通过LangGraph、ReAct Agent等工具实战演练,解析企业级RAG系统架构与优化策略,并配套面试指导服务。建议学员结合实战项目深化理解,重点关注工程化落地与性能优化。该课程适合AI开发者及企业技术团队,既能掌握前沿技术,又能提升商业场景的落地能力。

2025-06-24 23:22:40 686

原创 大模型项目实战:业务场景和解决方案

本文全面梳理了18类主流AI大模型实战项目,涵盖智能问答、内容生成、语音助手、推荐系统等多领域。每个项目均给出核心功能、技术栈(如LangChain、Stable Diffusion、OpenAI API等)及实现路径,重点突出RAG、多模态、自动化等关键技术。文章特别指出智能问答、AI写作等低门槛项目适合快速落地,并强调向量数据库、Prompt工程等通用技术要素。最后建议根据实际需求选择技术组合,为开发者提供清晰的项目规划参考。(149字)

2025-06-24 23:11:04 1126

原创 快速搭建系统原型,UI界面,有哪些高效的AI工具和方法

摘要:当前主流AI工具大幅提升系统原型和UI设计效率。设计端有Uizard、Figma AI等可自动生成高保真原型;开发侧GitHub Copilot等支持代码生成,Retool等低代码平台快速搭建功能。配套AI工具覆盖文案生成(Notion AI)、素材创作(DALL·E)、用户体验分析(Maze AI)全流程。建议采用"AI生成+低代码实现+快速验证"模式,通过工具链协同将产品迭代周期缩短70%以上。不同角色可根据需求组合使用这些智能工具实现高效创新。(150字)

2025-06-24 23:05:58 912

原创 大模型时代的创业机遇

摘要: 大模型时代为创业者提供了丰富机遇,包括垂直行业数字化转型、内容生成、智能助手及自动化办公等领域。创业方向可聚焦AI助手、知识库+RAG、内容生成工具等赛道,结合开源模型与API快速验证产品。独立开发者需具备全栈能力与抗压性,通过SaaS订阅、API计费等方式实现商业化。产品研发需采用AI驱动的敏捷流程,注重Prompt工程与多模态集成。建议学习大模型原理、全栈开发及运营知识,关注行业需求与技术动态,抓住AI风口实现低成本全球化创业。(150字)

2025-06-24 23:01:40 622

原创 AI 产品部署和交付的基础设施——全景解析

AI产品的部署和交付是一项系统工程,涉及硬件、云服务、模型选型、网络环境和本地化等多方面。希望通过本次分享,大家能对AI基础设施有更全面、深入的认识,为后续的产品研发和落地打下坚实基础。如有任何问题或想深入了解某一环节,欢迎随时交流!(可根据实际团队情况,补充具体案例或技术选型建议)

2025-06-24 22:52:04 568

原创 搭建智能问答系统,有哪些解决方案,比如使用Dify,LangChain4j+RAG等

智能问答系统解决方案全解析 本文系统梳理了智能问答系统的多种实现方案,从低代码平台到自建系统全面覆盖。按照复杂度可分为低代码平台(如Dify、FastGPT)、框架开发(LangChain系列)和自建系统;按部署方式则包含SaaS、私有化和混合部署。文章详细对比了各方案的优缺点,如Dify功能全面适合企业级应用,FastGPT专注知识库问答,RagFlow开源可定制。同时提供了技术选型建议,小型项目推荐FastGPT,中型可选LangChain4j,大型企业适合自建系统。最后从开发成本和运营成本维度进行对比

2025-06-24 22:45:16 828

原创 Gradio可视化构建聊天机器人

Gradio是一个专为机器学习设计的Python库,能够快速构建和部署交互式Web界面。摘要如下: 核心功能:通过简单代码即可创建支持文本、图像、音频等多模态输入输出的界面,特别适合展示ML模型效果。 特色优势: 内置实时交互和自动部署功能 提供丰富组件(聊天框、上传控件等) 比Streamlit/Dash更轻量,学习曲线平缓 典型应用: 快速搭建聊天机器人(示例含OpenAI集成代码) 模型演示(图像分类、情感分析等) 多模态处理界面开发 部署场景:支持本地运行、Hugging Face Spaces云端

2025-06-24 22:42:12 383

原创 总结:Function Call,MCP,A2A,LLM对话流和工作流里配置代码调用API等类似技术

AI与外部系统交互的关键技术概览: 该技术体系包含五大类:1)函数调用(如OpenAI Function Calling),实现标准化指令交互;2)代码执行(Code Interpreter/Docker沙箱),支持动态计算但需安全管控;3)协议通信(MCP/A2A),提供标准化多Agent协作方案;4)API集成(REST/gRPC),成熟的企业级连接方式;5)插件系统,扩展AI生态能力。 选择建议:轻量级应用用Function Call+API,复杂系统推荐MCP+A2A协议栈。未来趋势聚焦多模态交互、

2025-06-24 22:38:23 920

原创 市面上重要的AI开发工具和框架

AI开发工具全景指南:从框架选型到技术栈构建 本文系统梳理了当前主流的AI开发工具和框架,按照功能分类呈现全面对比分析。核心内容包括: 六大工具分类:覆盖应用框架(LangChain/Semantic Kernel等)、工作流编排(LangGraph/Prefect)、开发调试(LangSmith)、部署服务(Azure/Bedrock)、知识库系统(Weaviate/Milvus)和低代码平台 多维度对比:从语言支持、特色功能到适用场景,提供详尽的对比表格 技术栈建议:按开发语言(Python/Java/

2025-06-24 22:20:57 1085

原创 Dify,FastGPT,RagFlow有啥区别,在智能问答方面有啥区别

三大低代码AI平台对比:Dify、FastGPT与RagFlow Dify、FastGPT和RagFlow是当前主流的低代码AI开发平台,各具特色。Dify定位全栈式解决方案,支持多模态和工作流集成,适合企业级复杂需求;FastGPT专注知识库问答,操作简单,适合快速部署;RagFlow作为开源框架,技术灵活可深度定制,适合开发团队。Dify功能最全面但成本较高,FastGPT性价比突出,RagFlow自主可控但需技术基础。选择取决于具体场景:企业选Dify,轻量化需求选FastGPT,技术团队优先考虑Ra

2025-06-24 22:07:50 1037

原创 AutoGPT,自主完成复杂任务

AutoGPT是一个开源的自主AI代理系统,能够独立完成多步复杂任务。它通过OODA循环(观察、定向、决策、行动)自主规划任务流程,调用各类工具(网络搜索、文件操作、API等)执行操作,并具备长期记忆和自我纠错能力。典型应用包括自动研究、代码开发、内容创作和数据分析等。相比传统对话AI,AutoGPT具有更高自主性,但也面临成本高、稳定性不足等技术挑战。该项目代表了AI从被动响应向主动行动的重要发展方向,为自动化处理复杂任务提供了新思路。

2025-06-24 21:56:51 993

原创 生成式AI和判别式AI,有啥区别

特性生成式AI判别式AI主要功能创造新内容分类和预测输出类型多样化、创造性确定性、结构化典型应用图像分类、推荐系统学习目标数据分布建模决策边界学习复杂度通常较高相对较低这两种AI类型各有优势,在实际应用中经常需要结合使用,以实现更复杂和智能的系统。

2025-06-24 21:53:49 629

原创 思维链和思维树有什么区别

思维链(CoT)和思维树(ToT)是AI大模型推理中的两种分步思考方法。思维链采用线性结构,逐步推演答案,适合数学题等顺序性任务;思维树则通过树状分支探索多种可能路径,适用于复杂规划或开放式问题。前者简单高效,后者灵活全面,两者分别针对不同复杂度的问题场景。核心差异在于线性推理与多路径探索的能力区别。

2025-06-24 12:41:49 317

原创 独立开发者技术栈与服务交付完全指南

这样你就能在保持技术优势的同时,快速响应市场需求,提高交付效率和质量。需要我详细讲解某个具体技术栈的实施方案吗?

2025-06-22 17:31:02 730

原创 中国独立开发者生存现状全解析(2025年真实情况)

中国独立开发者现状分析(2025年)显示行业呈现明显分层: 收入结构:5%顶尖开发者月入5万+(SaaS/开源项目),30%稳定层月入8000-1.5万(外包+产品组合),15%挣扎层月入不足3000 主流赛道:工具类SaaS(如Apifox月入百万)、小程序(广告+付费变现)、技术服务外包(稳定但成长性低) 生存挑战:一线城市月成本8000-15000,有娃家庭需月入1.2万+才能维持,收入不稳定和竞争激烈是主要痛点 成功要素:技术+商业思维结合、多元化收入(产品+咨询+内容)、长期维护用户关系,典型案例

2025-06-22 17:05:53 1503

原创 2025年6月最新AI大模型技术全景图谱(Java开发者完整指南)

2025年6月AI大模型技术全景速览: 1️⃣ 基础模型:GPT-4o mini、Claude 3.5等主流模型持续迭代,MoE架构和混合智能体成为新趋势 2️⃣ Java生态:LangChain4j 1.0和Spring AI 1.2成为企业首选,与Ollama等工具深度集成 3️⃣ RAG技术:Agentic RAG和GraphRAG大幅提升检索性能,Qdrant等向量数据库性能优化明显 4️⃣ 应用热点:AI工作流平台、智能客服系统需求旺盛,多模态和实时交互技术快速发展 5️⃣ 职业机会:AI架构师年

2025-06-22 13:00:18 964

原创 大模型技术全景图谱(AI生成)

大模型技术全景图谱系统梳理了AI领域的核心技术与应用框架。图谱分为基础模型层(包括GPT、Claude等通用模型及代码/数学等专业模型)、开发工具层(LangChain等框架)、RAG技术栈(文档处理/向量数据库/检索优化)、核心应用场景(对话系统/内容生成/智能分析)、关键技术组件(提示工程/Agent架构)、部署运维方案及安全合规要求。完整呈现了大模型从底层技术到上层应用的全链路技术体系,覆盖模型选型、开发框架、检索增强、应用落地等关键环节,为AI系统构建提供全面技术参考。

2025-06-22 12:39:01 565

原创 2022年以来大模型技术及生态发展汇总文档

2022年以来,大模型技术飞速发展,涵盖了模型能力提升、多模态、RAG、Agent、多智能体协作、MCP协议、知识检索、模型压缩与安全等多个方向,生态和应用场景日益丰富,开源与商业化并进。

2025-06-15 20:36:15 1116

走出软件作坊(高清).pdf

走出软件作坊(高清).pdf 115页 绝对高清 2分

2013-06-20

大型网站技术架构分析(余浩东).pdf

大型网站技术架构分析(余浩东).pdf 大型网站技术架构分析(余浩东).pdf http://blog.csdn.net/FansUnion http://blog.csdn.net/FansUnion

2013-04-04

多图详解Spring框架的设计理念与设计模式.pdf

多图详解Spring框架的设计理念与设计模式.pdf 多图详解Spring框架的设计理念与设计模式.pdf http://blog.csdn.net/FansUnion http://blog.csdn.net/FansUnion

2013-04-04

将大量数据从数据库导入到Excel文档

这是我在公司实习的时候研究的课题,主要将大量数据从数据库导出到Excel文件。(一般是值Excel2007及以后版本)因为Excel2003及以前的版本中能保持的数据量是有限制的。Excel2007及以后版本中的数据能保持100万条记录左右,我用的是Oracle数据库,要导入40万条数据。我主要采用了JXLS和POI的第三方jar包,这几个程序实例,都是我参考各种资料,自己写的,都运行过,能把40万数据导入到Excel文件中,而且性能也挺好的,这几个是程序代码,我把这几个程序的文档总结也上传了,如果要下载的话,可以去我的下载空间。

2013-06-26

中国省份和城市数据(mysql数据库)

中国城市mysql数据,包括省份、城市。 两个表,一个省份表,一个城市表。

2013-05-18

spring security 完整eclipse工程

spring security 完整eclipse工程。 *根据下面的文章的例子,补全改善追加功能。 http://blog.csdn.net/k10509806/article/details/6369131 spring security 完整eclipse工程。 *根据下面的文章的例子,补全改善追加功能。 http://blog.csdn.net/k10509806/article/details/6369131

2013-07-09

Servicemix做代理服务器发布WebService

Servicemix做代理服务器发布WebService,Login登录实际代码。对应博客中ServiceMix做代理服务器发布WebService(附带案例源码) 该篇例子,需要的可以去看看,这个是源码。

2013-05-27

Java 利用POI操作PPT

Java 利用POI操作PPT。 1.创建幻灯片并插入文本 2.插入图片,支持多种格式 3.插入表格 4.解析PPT文件中的图片 文件格式为 mht,使用IE或Firefox 浏览器打开。

2013-04-19

Java-ApacheMail发送邮件

------------------------目录和文件说明 1.src目录下是java源文件。 2.lib目录下是需要的库文件。 3.email.properties是邮箱服务器等信息的配置文件,应该放在类路径下。 -------------------------源文件内容说明----------------------- JavaMail发送邮件还是有些复杂,所以Apache CommonsEmail进行了再次封装,大大简化了邮件发送过程。 网站中经常用到的功能就是简单的发送一些邮件,比如发送 找回密码信息、报警信息,所以使用Apache Commons Email 写了一个可以复用的类,功能就是简单的发送一些邮件,可以含有收信人、抄送人、按送人、邮件主题、邮件正文、附件。 ------------------------------------------------------------ 测试或使用中发现问题,有更多需求,请及时联系-小雷-哦!亲! [email protected] 小雷网:http://FansUnion.cn

2013-09-06

MongoDBJavaAPI文档

使用httrack-noinst-3.46.1 镜像 Mongodb 驱动JavaAPI 2.4。 MongoDBJavaAPI文档 MongoDBJavaAPI文档 MongoDBJavaAPI文档

2013-07-08

Excel2html

使用java版excel操作api实现excel读取并转转为html,转换后的文件包含边框线、背景色、字体、字号、列宽等样式处理。 使用java版excel操作api实现excel读取并转转为html,转换后的文件包含边框线、背景色、字体、字号、列宽等样式处理。

2013-06-13

JTest 8.4.20 破解

将lic_client.jar直接覆盖到以下目录即可: Parasoft\JtestExtension8.4\eclipse\plugins\com.parasoft.xtest.libs_3.4.20\Parasoft\lic_client.jar [本资源仅供个人使用,不得用于任何商业用途] PS : 发现有人没找到 JTest 8.4安装文件,下面提供一个连接。 (这个连接我没试过,要是不好用,大家在网上再搜搜吧) http://hanulit.mine.nu:81/parasoft_download/Jtest/8.4/

2013-06-14

将word,ppt,excel转换成html

将word,ppt,excel转换成html

2013-06-13

mongodb java驱动 API文档

Mongodb Mongodb Mongodb 最新的2.9.1版本的java api文档。比较实用,方便离线的时候查看。 最新的2.9.1版本的java api文档。比较实用,方便离线的时候查看。 最新的2.9.1版本的java api文档。比较实用,方便离线的时候查看。

2013-07-08

MYSQL最新省份城市数据库

MYSQL最新省份城市数据库,城市齐全!

2013-05-18

悟透JavaScript

中文名: 悟透JavaScript 作者: 李战 资源格式: PDF 版本: 文字版 出版社: 电子工业出版社书号: 9787121074738发行时间: 2008年12月 地区: 大陆 语言: 简体中文 简介: 内容简介: 翻开此书的你,也许是JavaScript的崇拜者,正想摩拳擦掌地想尝试下学一学这一精巧的语言;也许是80后,90后的程序员或者前端架构师,正被 JavaScript魔幻般的魅力所吸引,所困惑,已经徘徊许久……那么本书正是你所需要的!通过本书,您可以独辟蹊径学习、理解和运用 JavaScript;通过本书,您可以更轻松地编写动态网页;通过本书,您可以更深入地理解AJAX技术;通过本书,您可以在学习技术本身的同时,领悟到编程的境界;通过本书,您可以更多地享受到读书的快乐和程序的魅力……. 基本信息: 出版社: 电子工业出版社; 第1版 (2008年12月1日) 平装: 177页 语种: 简体中文 开本: 16 ISBN: 9787121074738 条形码: 9787121074738 商品尺寸: 23.2 x 18.2 x 1.8 cm 品牌: 电子工业出版社 ASIN: B001L4MEQW 编辑推荐: 为了使您能通过此书彻底地悟透JavaScript,我们为您准备了一系列的后续学习进程:1.与《悟透JavaScript(美绘本)》 作者李战老师精彩互动——专题精彩讲座、网络视频在线交流,您 将亲身体味大师风范。2.“我看此书……”书评竞赛——请把您读此书的感想、评论、甚至是故事发送给我们,您将收到惊喜大礼包。3 畅销图书投资活动——我们几乎每月会推出重量级的图书,幸运的您也许会得到您中意的图书。 作者简介: 李战,阿里软件的老顽童,混迹IT江湖多年。在数据库、Web架构、前端技术及数据库全文检索方面有身后内力,后又专研SaaS武功秘籍,略有所成。此君武功神出鬼没,时而用童子功欺负小孩,时而施展君子剑英雄救美,时而又假借如来神掌扮仙扮佛。但由于修炼的武功太多太杂,终至走火入魔,陷入编程世界的深渊而不能自拔。 目录: 第一部 JavaScript真经 引子 数据与代码的纠缠 1 回归简单 2 没有类 3 函数的魔力 4 代码的时空 5 奇妙的对象 6 放下对象 7 对象素描 8 构造对象 9 初看原型 10 原型扩展 11 原型真谛 12 甘露模型 13 编程的快乐 第二部 手谈JavaScript 1 禅棋传说 2 标准网页 3 网页运行原理 4 文档对象模型 5 妆扮DOM对象 6 响应DOM事件 7 播放声音 8 别向复杂低头 9 珍珑棋局 第三部 点化AJAX 1 叩问AJAX 2 直捣AJAX 3 ASP.NET AJAX简介 4 AJAX与WebService .....

2013-07-30

SOAP与Java编程指南.pdf

SOAP与Java编程指南.pdf

2013-05-28

jsp读取Excel的数据

jsp读取Excel的数据

2013-06-13

Spring源码分析.pdf

Spring源码分析.pdf,Spring源码分析.pdf,http://blog.csdn.net/FansUnion,http://blog.csdn.net/FansUnion

2013-04-04

Spring源代码解析.rar

Spring源代码解析.rar,Spring源代码解析.rar,http://blog.csdn.net/FansUnion,http://blog.csdn.net/FansUnion

2013-04-04

Struts2SpringHibernate整合,一个HelloWorld版的在线书店(项目源码+详尽注释+单元测试)

Struts2,Spring,Hibernate是Java Web开发中最为常见的3种框架,掌握这3种框架是每个Java Web开发人员的基本功。 然而,很多初学者在集成这3个框架的时候,总是会遇到各种各样的问题。 我在读大学刚刚学习SSH的时候,也是如此。 当时,做了一个Demo性质的在线书店,现在分享给大家。 希望对初学者有所帮助。 包简介 action:控制层,Struts2的Action,响应前端HTTP请求。 service:业务层,处理业务逻辑。 dao:数据访问层,数据库增删改查接口。 domain:领域实体。 util:工具类。 实体 Book:书籍,一本书,比如“《编写可读代码的艺术》”。 BookCategory:书籍分类,比如“管理”、“计算机”。 BookComment:书的评论。 Order:一个订单。 OrderItem:一个订单的一项。 User:用户。 UserRole:用户的角色。 实体虽然有7个,真正的实现却很简单,这并不是一个完整的在线书店项目。 我的CSDN博客 http://blog.csdn.net/FansUnion 亲,有很多精彩技术文章等着你哦。

2013-10-01

一个HelloWorld版的MySQL数据库管理器的设计与实现(源码)

一个HelloWorld版的MySQL数据库管理器的设计与实现(源码) 我的CSDN博客还有很多优质原创文章,有兴趣的同学可以来瞧瞧。(*^__^*) 嘻嘻 http://blog.csdn.net/FansUnion CSDN 博客专家 FansUnion 2013年10月20日

2013-10-20

中国象棋-FansChineseChess2.0-20130917

中国象棋 楚汉棋兵 联网对战、打谱、八皇后、迷宫求解、人机对弈

2013-09-17

Java-Spring-WebService最基础的配置示例

Java-Spring-WebService最基础的配置示例.txt

2015-10-27

一份IT技术岗位简历模版.doc

一份IT技术岗位简历模版.doc

2013-11-09

Dubbo入门案例和项目源码

Dubbo入门案例和项目源码

2016-04-21

斗地主算法的设计与实现-FansUnion-DouDiZhu-20131012.zip

斗地主项目的主要实现了,斗地主中的洗牌、发牌、判断牌型、排序等一系列算法,但这并不是一个完整的项目。 界面操作部分,功能很有限,仅供参考,有兴趣的同学自行完善。 我的CSDN博客还有很多优质原创文章,有兴趣的同学可以来瞧瞧。(*^__^*) 嘻嘻 http://blog.csdn.net/FansUnion CSDN 博客专家 FansUnion 2013年10月12日

2013-10-12

MongoDB权威指南中文版(高清).pdf

MongoDB权威指南中文版(高清).pdf 第1版

2015-10-12

ExcelToHtmlTable转换算法:将Excel转换成Html表格并展示(项目源码+详细注释+项目截图)

功能概述 Excel2HtmlTable的主要功能就是把Excel的内容以表格的方式,展现在页面中。 Excel的多个Sheet对应页面的多个Tab选项卡。 转换算法的难点在于,如何处理行列合并,将Excel的行列合并模型转换成Html表格的行列合并模型。 背景故事 因实际需要,需要将Excel展现在Web界面中。 最初,想在网上找开源的东东,结果没有1个是想要的。有的特别复杂,有的只能在Windows平台,需要闭源的dll,最终还是得靠自己。 人不逼迫自己,真是想偷懒,不能出成果。 要是不是自己实现一次,根本不能发现和解决一系列问题。 最重要的经验就是:要努力克服自己的畏难情绪,不能怕麻烦。

2013-10-04

推荐系统实践

推荐系统实践.pdf 第1 章 好的推荐系统....................................... 1 1.1 什么是推荐系统........................................... 1 1.2 个性化推荐系统的应用............................... 4 1.2.1 电子商务.......................................... 4 1.2.2 电影和视频网站............................... 8 1.2.3 个性化音乐网络电台..................... 10 1.2.4 社交网络........................................ 12 1.2.5 个性化阅读.................................... 15 1.2.6 基于位置的服务............................. 16 1.2.7 个性化邮件.................................... 17 1.2.8 个性化广告.................................... 18 1.3 推荐系统评测............................................ 19 1.3.1 推荐系统实验方法......................... 20 1.3.2 评测指标........................................ 23 1.3.3 评测维度........................................ 34 第2 章 利用用户行为数据............................. 35 2.1 用户行为数据简介..................................... 36 2.2 用户行为分析............................................ 39 2.2.1 用户活跃度和物品流行度的 分布................................................ 39 2.2.2 用户活跃度和物品流行度的 关系................................................ 41 2.3 实验设计和算法评测................................. 41 2.3.1 数据集............................................ 42 2.3.2 实验设计........................................ 42 2.3.3 评测指标........................................ 42 2.4 基于邻域的算法......................................... 44 2.4.1 基于用户的协同过滤算法............. 44 2.4.2 基于物品的协同过滤算法............. 51 2.4.3 UserCF 和ItemCF 的综合比较...... 59 2.5 隐语义模型................................................ 64 2.5.1 基础算法........................................ 64 2.5.2 基于LFM的实际系统的例子....... 70 2.5.3 LFM和基于邻域的方法的比较.... 72 2.6 基于图的模型............................................ 73 2.6.1 用户行为数据的二分图表示......... 73 2.6.2 基于图的推荐算法......................... 73 第3 章 推荐系统冷启动问题........................ 78 3.1 冷启动问题简介........................................ 78 3.2 利用用户注册信息..................................... 79 3.3 选择合适的物品启动用户的兴趣............. 85 3.4 利用物品的内容信息................................. 89 3.5 发挥专家的作用........................................ 94 第4 章 利用用户标签数据............................. 96 4.1 UGC 标签系统的代表应用....................... 97 4.1.1 Delicious ......................................... 97 4.1.2 CiteULike ....................................... 98 4.1.3 Last.fm............................................ 98 4.1.4 豆瓣................................................ 99 4.1.5 Hulu ................................................ 99 4.2 标签系统中的推荐问题........................... 100 4.2.1 用户为什么进行标注................... 100 4.2.2 用户如何打标签........................... 101 4.2.3 用户打什么样的标签................... 102 4.3 基于标签的推荐系统............................... 103 4.3.1 实验设置...................................... 104 4.3.2 一个最简单的算法....................... 105 4.3.3 算法的改进.................................. 107 4.3.4 基于图的推荐算法....................... 110 4.3.5 基于标签的推荐解释................... 112 4.4 给用户推荐标签...................................... 115 4.4.1 为什么要给用户推荐标签........... 115 图灵社区会员 臭豆腐([email protected]) 专享 尊重版权 2 目 录 4.4.2 如何给用户推荐标签................... 115 4.4.3 实验设置...................................... 116 4.4.4 基于图的标签推荐算法............... 119 4.5 扩展阅读.................................................. 119 第5 章 利用上下文信息............................... 121 5.1 时间上下文信息...................................... 122 5.1.1 时间效应简介.............................. 122 5.1.2 时间效应举例.............................. 123 5.1.3 系统时间特性的分析................... 125 5.1.4 推荐系统的实时性....................... 127 5.1.5 推荐算法的时间多样性............... 128 5.1.6 时间上下文推荐算法................... 130 5.1.7 时间段图模型.............................. 134 5.1.8 离线实验...................................... 136 5.2 地点上下文信息...................................... 139 5.3 扩展阅读.................................................. 143 第6 章 利用社交网络数据........................... 144 6.1 获取社交网络数据的途径....................... 144 6.1.1 电子邮件...................................... 145 6.1.2 用户注册信息.............................. 146 6.1.3 用户的位置数据........................... 146 6.1.4 论坛和讨论组.............................. 146 6.1.5 即时聊天工具.............................. 147 6.1.6 社交网站...................................... 147 6.2 社交网络数据简介................................... 148 社交网络数据中的长尾分布................... 149 6.3 基于社交网络的推荐............................... 150 6.3.1 基于邻域的社会化推荐算法....... 151 6.3.2 基于图的社会化推荐算法........... 152 6.3.3 实际系统中的社会化推荐 算法.............................................. 153 6.3.4 社会化推荐系统和协同过滤 推荐系统...................................... 155 6.3.5 信息流推荐.................................. 156 6.4 给用户推荐好友...................................... 159 6.4.1 基于内容的匹配........................... 161 6.4.2 基于共同兴趣的好友推荐........... 161 6.4.3 基于社交网络图的好友推荐....... 161 6.4.4 基于用户调查的好友推荐算法 对比.............................................. 164 6.5 扩展阅读.................................................. 165 第7 章 推荐系统实例................................... 166 7.1 外围架构.................................................. 166 7.2 推荐系统架构.......................................... 167 7.3 推荐引擎的架构...................................... 171 7.3.1 生成用户特征向量....................... 172 7.3.2 特征物品相关推荐.................... 173 7.3.3 过滤模块...................................... 174 7.3.4 排名模块...................................... 174 7.4 扩展阅读.................................................. 178 第8 章 评分预测问题................................... 179 8.1 离线实验方法.......................................... 180 8.2 评分预测算法.......................................... 180 8.2.1 平均值.......................................... 180 8.2.2 基于邻域的方法........................... 184 8.2.3 隐语义模型与矩阵分解模型....... 186 8.2.4 加入时间信息.............................. 192 8.2.5 模型融合...................................... 193 8.2.6 Netflix Prize 的相关实验结果..... 195 后记....................................................................... 196

2013-12-27

中国象棋程序的设计与实现(原始版)(包含源码)

2010年,我从CSDN下载中心下载了1个中国象棋程序,功能比较简单。 我在此基础上,开发了当前版本(1.0)的程序。相对于下载的版本, 增加了联网对战,悔棋等功能,增加必要的注释,重命名类、函数、变量的名字,提高了可读性。 特别说明:这个1.0版本的功能比较弱,用户体验也很差,bug也不少。 主要用来学习用,如果有兴趣,可以自行完善。 敬请期待:2.0版本比1.0版本要好很多,无论是功能还是用户体验,近期更新,敬请期待。

2013-09-09

JDK1.6中文API手册.CHM

JDK1.6中文API手册.CHM JDK1.6中文API手册.CHM ITFriend-IT从业者互动交流平台 http://www.itfriend.cn/ ITFriend-IT从业者互动交流平台 http://www.itfriend.cn/

2014-06-29

Struts2框架单元测试代码

Struts2框架单元测试代码 一个完整的Eclipse工程

2013-09-28

在Java中使用脚本语言JavaScript

/** * 在Java中使用脚本语言JavaScript。 * * @author [email protected],http://FansUnion.cn, * http://blog.csdn.net/FansUnion * * QQ:240370818 参考资料:http://developer.51cto.com/art/201007/208812.htm * */

2014-01-07

Struts2SpringUnitDemo单元测试

Struts2 Spring 框架整合 单元测试 Action和Service http://blog.csdn.net/fansunion/

2013-09-28

ITFriend月刊-第1期-2014年6月.pdf

ITFriend月刊-第1期-2014年6月.pdf

2014-06-26

挑战程序设计竞赛(第2版) 高清完整版

挑战程序设计竞赛(第2版) 高清完整版

2014-06-29

BIEE11g培训资料 中文

01.BIEE 11G概览/02.BIEE 11G Dashbord/03.BIEE 11G Action Framework/04.BI Publisher/05.地图数据管理/06.故障与维护/07.BIEE安全性/08.Admintool高级功能/09.Essbase与BIEE集成

2013-11-25

Axure快速原型设计(第二版).pdf

Axure快速原型设计(第二版).pdf

2013-11-19

常用开源NoSQL原理与应用.ppt

常用开源NoSQL原理与应用.ppt

2014-06-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除