Windows数据类型探幽——千回百转你是谁?(1)

本文探讨了Windows操作系统中各种数据类型,包括字符、整数、逻辑值(布尔)、指针和句柄,强调理解这些类型对理解程序工作原理的重要性。内容摘自作者的周末学习笔记,提供了一张初步的数据类型表,适用于C语言编程环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Windows Data Types

Windows数据类型

 

  由微软Windows操作系统所支持的各种数据类型是用来定义函数的返回值、函数和消息的参数以及结构体成员(因为Win32程序是用C语言来编写,所以没有“类”这个概念)的。这些数据类型定义了上述元素的尺码(在内存中的,也就是占用内存的字节数)和含义。笔者以前一直不太注意这些东西,结果在程序设计时可谓步履维艰。不同类型的常/变量,在程序用扮演的角色相去甚远,了解这些类型,对剖析程序的工作原理是非常有用的。今天又是周末,我把这些类型列出来,然后把它们的“原形”也找出来——是不是很像“照妖镜”呀。

       下面这张表里包括这些类型:字符类型(character),整数类型(integer),逻辑值类型(布尔型,海峡那边的兄弟们喜欢叫“布林型”,Boolean),指针类型(pointer),句柄型(handle)。其中,字符类型、整数类型和逻辑值(布尔)类型是C语言编译器通用的,也就是与标准C语言一样。大多数指针类型都是以PPointer)或者LPLong Pointer)前缀开头。“句柄”是指被装载进内存的一个资源(本质而言就是指一定范围内的唯一编号)。

  下面这张表是我结合MSDN里的资料制作的,因为自己也是初学,做的还比较粗糙,请大家多多指正:)

Windows数据类型 本质类型 字节数 定义过程(来历) 含义
ATOM unsigned short 2 unsigned short→WORD→ATOM 在Atom表中,一键(16位整数)一值(一个String)为一个Atom。
BOOL int * int→BOOL 逻辑变量,布尔值 (取值为 TRUE 或 FALSE)
BOOLEAN unsigned char 1 unsigned char→BYTE→BOOLEAN 逻辑变量,布尔值 (取值为 TRUE 或 FALSE)
BYTE unsigned char 1 unsigned char→BYTE 字节型,8位。
CALLBACK __stdcall 调用 __stdcall→CALLBACK 回调函数的调用约定
CHAR char 1 char→CHAR
### LSTM 的深入原理 LSTM 是一种特殊的循环神经网络(RNN),其设计目的是解决传统 RNN 中存在的梯度消失和梯度爆炸问题,从而能够捕捉长时间序列中的依赖关系。LSTM 通过引入门控机制以及细胞状态的概念实现了这一目标。 #### 细胞状态与门控结构 LSTM 的核心在于它的 **细胞状态** 和三个主要的门控单元:遗忘门、输入门和输出门。这些组件共同决定了信息如何流入、存储和流出 LSTM 单元。 1. **细胞状态(Cell State)** - 细胞状态是一个贯穿整个序列的信息流通道,它允许信息在整个序列中传递而不受太多干扰[^1]。 2. **遗忘门(Forget Gate)** - 遗忘门决定哪些信息应该从细胞状态中移除。该门接收当前输入 \(x_t\) 和前一时刻隐藏状态 \(h_{t-1}\),并通过一个 sigmoid 层计算出一个介于 0 到 1 之间的值,表示保留或丢弃的程度。 \[ f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) \] 这里 \(W_f\) 表示权重矩阵,\(b_f\) 表示偏置向量,\(\sigma\) 表示激活函数sigmoid[^1]。 3. **输入门(Input Gate)** - 输入门控制新信息进入细胞状态的程度。这包括两个部分: - 使用另一个 sigmoid 层决定更新哪些部分。 \[ i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \] - 使用 tanh 层创建一个新的候选值向量,可能加入到状态中。 \[ \tilde{C}_t = \text{tanh}(W_C \cdot [h_{t-1}, x_t] + b_C) \] 4. **细胞状态更新** - 结合遗忘门和输入门的结果,更新细胞状态 \(C_t\)。 \[ C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t \] 其中 \(\odot\) 表示逐元素乘法操作[^1]。 5. **输出门(Output Gate)** - 输出门决定基于新的细胞状态输出什么值。首先通过一个 sigmoid 层确定输出的部分,再通过对细胞状态应用 tanh 函数得到最终输出。 \[ o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) \] \[ h_t = o_t \odot \text{tanh}(C_t) \] #### 实现细节 以下是 Python 中使用 TensorFlow/Keras 构建基本 LSTM 模型的代码示例: ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense # 定义模型架构 model = Sequential() model.add(LSTM(50, activation='relu', input_shape=(n_steps, n_features))) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') # 打印模型概要 model.summary() ``` 在这个例子中,`LSTM` 层有 50 个单元,`activation='relu'` 设置了激活函数为 ReLU,而 `input_shape` 参数指定了输入数据的时间步数和特征数量[^1]。 尽管 LSTM 能够很好地处理长序列数据,但它也存在一些局限性。例如,在非常长的输入时间步长下,强迫 LSTM 记住单一观测可能会导致性能下降甚至失败[^2]。 --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值