Windows数据类型探幽——千回百转你是谁?(4)

博客介绍了Visual C++ 7.1编译器支持的数据类型,称其为Windows各种数据类型的“根源”。作者经过十多个小时完成相关内容,也表示其中可能存在不完善或错误之处,希望大家批评指正。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  最后这张表是Visual C++ 7.1编译器支持的数据类型,也就是Windows各种数据类型的“根源”了。

数据类型名称字节数别名取值范围
int*signed,signed int由操作系统决定,即与操作系统的"字长"有关
unsigned int*unsigned由操作系统决定,即与操作系统的"字长"有关
__int81char,signed char–128 到 127
__int162short,short int,signed short int–32,768 到 32,767
__int324signed,signed int–2,147,483,648 到 2,147,483,647
__int648–9,223,372,036,854,775,808 到 9,223,372,036,854,775,807
bool1false 或 true
char1signed char–128 到 127
unsigned char10 到 255
short2short int,signed short int–32,768 到 32,767
unsigned short2unsigned short int0 到 65,535
long4long int,signed long int–2,147,483,648 到 2,147,483,647
long long8none (but equivalent to __int64)–9,223,372,036,854,775,808 到 9,223,372,036,854,775,807
unsigned long4unsigned long int0 到 4,294,967,295
enum*由操作系统决定,即与操作系统的"字长"有关
float43.4E +/- 38 (7 digits)
double81.7E +/- 308 (15 digits)
long double81.7E +/- 308 (15 digits)
wchar_t2__wchar_t0 到 65,535

  经过十多个小时的“奋战”,终于完成了:)
  很开心。不过我知道,其中肯定有不完善甚至是错误的地方,请大家多多批评指正,在此先谢过大家。

### LSTM 的深入原理 LSTM 是一种特殊的循环神经网络(RNN),其设计目的是解决传统 RNN 中存在的梯度消失和梯度爆炸问题,从而能够捕捉长时间序列中的依赖关系。LSTM 通过引入门控机制以及细胞状态的概念实现了这一目标。 #### 细胞状态与门控结构 LSTM 的核心在于它的 **细胞状态** 和三个主要的门控单元:遗忘门、输入门和输出门。这些组件共同决定了信息如何流入、存储和流出 LSTM 单元。 1. **细胞状态(Cell State)** - 细胞状态是一个贯穿整个序列的信息流通道,它允许信息在整个序列中传递而不受太多干扰[^1]。 2. **遗忘门(Forget Gate)** - 遗忘门决定哪些信息应该从细胞状态中移除。该门接收当前输入 \(x_t\) 和前一时刻隐藏状态 \(h_{t-1}\),并通过一个 sigmoid 层计算出一个介于 0 到 1 之间的值,表示保留或丢弃的程度。 \[ f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) \] 这里 \(W_f\) 表示权重矩阵,\(b_f\) 表示偏置向量,\(\sigma\) 表示激活函数sigmoid[^1]。 3. **输入门(Input Gate)** - 输入门控制新信息进入细胞状态的程度。这包括两个部分: - 使用另一个 sigmoid 层决定更新哪些部分。 \[ i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \] - 使用 tanh 层创建一个新的候选值向量,可能加入到状态中。 \[ \tilde{C}_t = \text{tanh}(W_C \cdot [h_{t-1}, x_t] + b_C) \] 4. **细胞状态更新** - 结合遗忘门和输入门的结果,更新细胞状态 \(C_t\)。 \[ C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t \] 其中 \(\odot\) 表示逐元素乘法操作[^1]。 5. **输出门(Output Gate)** - 输出门决定基于新的细胞状态输出什么值。首先通过一个 sigmoid 层确定输出的部分,再通过对细胞状态应用 tanh 函数得到最终输出。 \[ o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) \] \[ h_t = o_t \odot \text{tanh}(C_t) \] #### 实现细节 以下是 Python 中使用 TensorFlow/Keras 构建基本 LSTM 模型的代码示例: ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense # 定义模型架构 model = Sequential() model.add(LSTM(50, activation='relu', input_shape=(n_steps, n_features))) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') # 打印模型概要 model.summary() ``` 在这个例子中,`LSTM` 层有 50 个单元,`activation='relu'` 设置了激活函数为 ReLU,而 `input_shape` 参数指定了输入数据的时间步数和特征数量[^1]。 尽管 LSTM 能够很好地处理长序列数据,但它也存在一些局限性。例如,在非常长的输入时间步长下,强迫 LSTM 记住单一观测可能会导致性能下降甚至失败[^2]。 --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值