数据结构简单介绍、算法简单介绍、算法复杂度、时间复杂度、空间复杂度等的介绍


前言

数据结构简单介绍、算法简单介绍、算法复杂度、时间复杂度、空间复杂度等的介绍

一、什么是数据结构

数据结构是计算机存储,组织数据结构的方式,指相互之间存在一种或多种特定关系的数据元素的集合。

二、什么是算法

算法: 简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。

三、算法复杂度

衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的。即时间复杂度和空间复杂度

  • 时间复杂度主要衡量一个算法的运行快慢
  • 空间复杂度主要衡量一个算法运行所需要的额外空间
  • 随着技术发展,计算机存储容量变得非常大,已经不是非常关注空间复杂度,而是更关注时间复杂度

1. 时间复杂度

① 时间复杂度的定义

  • 算法的时间复杂度是一个函数(函数式),一个算法执行所耗费的时间,理论上是不能算出来的,只有运行程序才能知道。
  • 但是一个算法所花费的时间与其中语句的执行次数正比例
  • 所以算法中的基本操作的执行次数,为算法的时间复杂度。

② 大O的渐进表示法

实际计算时间复杂度,不计算精确的执行次数,只需要计算大概执行次数(量级或阶数),我们用大O的渐进表示法。

  • 时间复杂度: O(N),习惯用N表示

1、用常数1取代运行时间中的所有加法常数。

int main()
{
	int count = 0;
	int M = 10;
	while (M--)
	{
		++count;
	}

	printf("%d\n", count);
}
  • 上述代码执行 M 次 相当于是 10 次, 也就是函数执行的量级是10(常数级),常数级用O(1)表示

2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N ; ++ k)
	{
		++count;
	}

	int M = 10;
	while (M--)
	{
		++count;
	}

	printf("%d\n", count);
}
  • 上述代码执行 (2 * N + M)次, 只保留高阶项
  • 高阶项存在且不是1,去除常数。
  • (2 * N)次,所以Func2的时间复杂度是: O(N)。

有些算法的时间复杂度存在最好、最坏和平均的情况。
在实际中一般情况关注的是算法的最坏运行情况

实例如下:

实例1:

void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++ k)
	{
		++count;
	}
	printf("%d\n", count);
}
  • 上述Func4的时间复杂度是:O(1)

实例2:

const char * strchr ( const char * str, int character );
  • 上述strchr 的时间复杂度是O(N)
  • 按最坏的情况算

实例3:

void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 1; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i-1] > a[i])
			{
				Swap(&a[i-1], &a[i]);
				exchange = 1;
			}
		}

		if (exchange == 0)
			break;
	}
}
  • 上述BubbleSort的时间复杂度
  • 若数组本来就有序(最好情况),则时间复杂度为O(N)
  • 若数组无序(最坏情况),则时间复杂度为O(N^2)
  • 时间复杂度为O(N^2)

实例4:

int BinarySearch(int* a, int n, int x)
{
	assert(a);

	int begin = 0;
	int end = n-1;
	while (begin <= end)
	{
		int mid = begin + ((end-begin) / 2);
		if (a[mid] < x)
			begin = mid+1;
		else if (a[mid] > x)
			end = mid-1;
		else
			return mid;
	}

	return -1;
}
  • 上述二分法时间复杂度为 O(logN) 这里的log是以2为底

实例5:

long long Fac(size_t N)
{
    if(0 == N)
        return 1;
    
    return Fac(N-1)*N;
}
  • 上述代码Fac(N) , Fac(N-1), Fac(N-2), …F(0), 共N+1次,所以时间复杂度是O(N)

实例6:

long long Fib(size_t N)
{
    if(N < 3)
        return 1;
    
    return Fib(N-1) + Fib(N-2);
}
  • 上述代码调用会调 2 ^ N次,所以时间复杂度为 O(2 ^ N)

实例7

void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++ k)
	{
		++count;
	}

	for (int k = 0; k < N ; ++ k)
	{
		++count;
	}
	printf("%d\n", count);
}
  • 上述Func3的时间复杂度是O(M + N)
  • 若 M >> N, 则时间复杂度为 O(M)
  • 若 N >> M, 则时间复杂度为 O(N)
  • 若 M = N, 则时间复杂度为 O(M)或O(N)
  • 若没有说明,时间复杂度为O(M + N)

2. 空间复杂度

  • 空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度
  • 空间复杂度计算的不是程序占用字节的大小,计算的是变量的个数
  • 跟时间复杂度一样也采用,大O渐进法

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

实例1:

void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i-1] > a[i])
			{
				Swap(&a[i-1], &a[i]);
				exchange = 1;
			}
		}

		if (exchange == 0)
			break;
	}
}
  • 上述函数中,创建了 end, exchange, i 三个变量所示空间复杂度为3(常数),O(1).

实例2:

long long* Fibonacci(size_t n)
{
    if(n==0)
         return NULL;
    
    long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n ; ++i)
    {
        fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
    }

    return fibArray;
}
  • 上述函数中,动态开辟了(n+1)个空间,所以空间复杂度为O(N).

实例2:

long long Fac(size_t N)
{
    if(N == 0)
        return 1;
    
	return Fac(N-1)*N;
}
  • 上述递归函数中,每次调用1个函数栈帧,共调用了(N+1)次,所以空间复杂度为O(N)。

总结

数据结构简单介绍、算法简单介绍、算法复杂度、时间复杂度、空间复杂度等的介绍

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值