- 博客(6)
- 收藏
- 关注
原创 天池大赛-心跳信号分类预测:模型融合
比赛地址:零基础入门数据挖掘-心跳信号分类预测参考资料:由DataWhale开源的学习资料1 简单加权融合import numpy as npimport pandas as pdfrom sklearn import metrics## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值test_pre1 = [1.2, 3.2, 2.1, 6.2]test_pre2 = [0.9, 3.1, 2.0, 5.9]test_pre3 = [1.1, 2.9, 2.2,.
2021-03-28 23:02:20
482
原创 天池大赛-心跳信号分类预测:建模与调参
比赛地址:零基础入门数据挖掘-心跳信号分类预测参考资料:由DataWhale开源的学习资料1 学习目标2 内容介绍逻辑回归模型:理解逻辑回归模型;逻辑回归模型的应用;逻辑回归的优缺点;树模型:理解树模型;树模型的应用;树模型的优缺点;集成模型基于bagging思想的集成模型随机森林模型基于boosting思想的集成模型XGBoost模型LightGBM模型CatBoost模型模型对比与性能评估:回归模型/树模型/集成模型;.
2021-03-25 22:26:47
690
原创 天池大赛-心跳信号分类预测:特征工程
Task3 特征工程此部分为零基础入门心电图分类的 Task3 特征工程部分,带你来了解各种特征工程以及分析方法,欢迎大家后续多多交流。赛题:零基础入门数据挖掘 - 零基础入门心电图分类项目地址:比赛地址:3.1 学习目标学习时间序列数据的特征预处理方法学习时间序列特征处理工具 Tsfresh(TimeSeries Fresh)的使用3.2 内容介绍数据预处理时间序列数据格式处理加入时间步特征time特征工程时间序列特征构造特征筛选使用 tsfresh 进行时间序
2021-03-23 00:57:34
466
原创 天池大赛-心跳信号分类预测:探索性数据分析
比赛地址:零基础入门数据挖掘-心跳信号分类预测参考资料:由DataWhale开源的学习资料1. EDA 目标EDA的价值主要在于熟悉数据集,了解数据集,对数据集进行验证来确定所获得数据集可以用于接下来的机器学习或者深度学习使用。当了解了数据集之后我们下一步就是要去了解变量间的相互关系以及变量与预测值之间的存在关系。引导数据科学从业者进行数据处理以及特征工程的步骤,使数据集的结构和特征集让接下来的预测问题更加可靠。完成对于数据的探索性分析,并对于数据进行一些图表或者文字总结并打卡。2. .
2021-03-19 21:13:52
882
原创 天池大赛-心跳信号分类预测:赛题理解与baseline解析
比赛地址:零基础入门数据挖掘-心跳信号分类预测参考资料:由DataWhale开源的学习资料赛题简介本次新人赛是Datawhale与天池联合发起的0基础入门系列赛事 —— 心跳信号分类预测。赛题以心电图心跳信号数据为背景,要求选手根据心电图感应数据预测心跳信号所属类别,其中心跳信号对应正常病例以及受不同心律不齐和心肌梗塞影响的病例,这是一个多分类的问题。通过这道赛题来引导大家了解医疗大数据的应用,帮助竞赛新人进行自我练习、自我提高。为了更好的引导大家入门,DataWhale还特别为本赛题定制了学.
2021-03-16 20:32:00
2916
原创 Datawhale学习 - 天池大赛比赛全流程体验
比赛地址: https://tianchi.aliyun.com/competition/entrance/531871/introduction1 学习目标使用docker上传容器镜像至阿里云的镜像仓库实践了镜像的pull、build、push等一系列操作完成了本地docker环境的配置以及代码的运行提交到远程完成了比赛的全流程体验2 学习流程2.1 安装Docker for WindowsDocker安装官方教程注意:Docker默认安装到C盘,构建镜像时会占据较大的空间,可以参照
2021-02-22 01:16:46
1182
3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人