2287. 【POJ Challenge】消失之物(数组递推\分治优化背包)

本文介绍了如何使用分治策略优化背包问题的解决方法,并通过具体实例展示了如何在多项约束条件下高效求解。文章首先提出了一个新颖的预处理dp技巧来减少时间复杂度,接着深入探讨了一种更为通用且高效的分治框架。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2287. 【POJ Challenge】消失之物

这题的思想和P4564 [CTSC2018]假面优化的思想一样,应该反过来说,假面那个题应该是借鉴这题的思路。

显然不能枚举每个物品消失 O ( n ) O(n) O(n),然后跑背包 O ( n m ) O(nm) O(nm)

预处理dp
f j f_j fj表示 n n n个物品装满体积为 j j j的背包的方案数。
g i , j g_{i,j} gi,j表示除了第 i i i个物品其他 n − 1 n-1 n1个物品装满体积为 j j j的背包的方案数。

显然 f j = g i , j + g i , j − v i f_j=g_{i,j}+g_{i,j-v_i} fj=gi,j+gi,jvi,于是 g i , j = f j + g i , j − v i g_{i,j}=f_j+g_{i,j-v_i} gi,j=fj+gi,jvi

预处理 f j f_j fj后我们可以 O ( n ) O(n) O(n)递推 g i , j g_{i,j} gi,j(g数组第一维显然没有必要)

#include<cstring>
#include<iostream>
using namespace std;
constexpr int N=2010;
int n,m;
int f[N],g[N];
int v[N];
int main()
{
    ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
    
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i];
    
    f[0]=1;
    
    for(int i=1;i<=n;i++)
        for(int j=m;j>=v[i];j--)
            f[j]=(f[j]+f[j-v[i]])%10;
            
    for(int i=1;i<=n;i++)
    {
        memset(g,0,sizeof g);
        for(int j=0;j<v[i];j++) g[j]=f[j];
        for(int j=v[i];j<=m;j++) g[j]=((f[j]-g[j-v[i]])%10+10)%10;
        
        for(int j=1;j<=m;j++) cout<<g[j];cout<<'\n';
    }
    return 0;
}

上面的trick非常巧妙,但是下面有一种方法,不如说是一种框架——分治 更值得去学习掌握。

寒假训练的时候就有一个分治的问题
XVIII Open Cup named after E.V. Pankratiev. Eastern Grand Prix K. King and ICPC不过现在没有oj测评没法补了~~就补个这个题吧(虽然分治里面不一样,不过都是分治的框架)

LinnBlanc题解分治背包

//O(nmlogn)
#include<cstring>
#include<iostream>
using namespace std;
constexpr int N=2010;
int n,m;
int v[N],f[15][N];
void solve(int u,int l,int r)
{
    if(l==r) 
    {
        for(int j=1;j<=m;j++) cout<<f[u-1][j];cout<<'\n';
        return;
    }
    int mid=l+r>>1;
    for(int j=0;j<=m;j++) f[u][j]=f[u-1][j];
    for(int i=mid+1;i<=r;i++)
        for(int j=m;j>=v[i];j--)
            f[u][j]+=f[u][j-v[i]],f[u][j]%=10;
    solve(u+1,l,mid);
    
    for(int j=0;j<=m;j++) f[u][j]=f[u-1][j];
    for(int i=l;i<=mid;i++)
        for(int j=m;j>=v[i];j--)
            f[u][j]+=f[u][j-v[i]],f[u][j]%=10;
    solve(u+1,mid+1,r);
    
}
int main()
{
    ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i];
    f[0][0]=1;
    solve(1,1,n);
    return 0;
}

upd:2021/3/8 下面题目效仿上面分治的做法即可

P4095 [HEOI2013]Eden 的新背包问题

同样可能少一个物品,按照上面分治的思路预处理少某个物品的背包即可。

多重背包->二进制优化(单调队列不会,难写

时间复杂度 O ( n m log ⁡ 2 n + q ) O(nm\log ^2n+q) O(nmlog2n+q)

#include<bits/stdc++.h>
using namespace std;
using ll=long long;
constexpr int N=1010;
int n,m,q;
int v[N*10],w[N*10],cnt;
int L[N],R[N];
int f[15][N],ans[N][N];
void update(int u,int l,int r)
{
    for(int i=L[l];i<=R[r];i++)
        for(int j=m;j>=v[i];j--)
            f[u][j]=max(f[u][j],f[u][j-v[i]]+w[i]);
}
void solve(int u,int l,int r)
{
    if(l==r) return memcpy(ans[l],f[u-1],sizeof(ans[l])),void();
    int mid=l+r>>1;
    memcpy(f[u],f[u-1],sizeof(f[u]));
    update(u,mid+1,r);
    solve(u+1,l,mid);
    memcpy(f[u],f[u-1],sizeof(f[u]));
    update(u,l,mid);
    solve(u+1,mid+1,r);
}

int main()
{
    ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
    cin>>n;m=1000;
    for(int i=1;i<=n;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        L[i]=cnt+1;
        int k=1;
        while(k<=c)
        {
            v[++cnt]=k*a;
            w[cnt]=k*b;
            c-=k;
            k*=2;
        }
        if(c) {v[++cnt]=c*a;w[cnt]=c*b;}
        R[i]=cnt;
    }
    solve(1,1,n);
    cin>>q;
    while(q--)
    {
        int d,e;
        cin>>d>>e;
        ++d;
        cout<<ans[d][e]<<'\n';
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值