[BZOJ5312]冒险(势能线段树)

这篇博客介绍了如何使用线段树来维护一个序列,支持区间按位或、区间按位与和查询区间最大值的操作。通过节点上维护区间与、区间或和区间最大值,利用打标记和递归更新的方法优化复杂度,实现了高效的区间操作和查询。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[BZOJ5312]冒险

维护一个长度为 n 的序列,支持 m 次操作,操作包括区间按位或一个数,区间按位与一个数,以及查询区间最大值。

线段树每个节点上维护区间与、区间或和区间最大值。
如果一次操作对区间与的影响和对区间或的影响相同,那么就说明对这整个区间的影响都是相同的,就是加上或减去同一个值,直接打标记即可,否则递归下去处理。

abcyan1235题解

#include<bits/stdc++.h>

using namespace std;
using ll=long long;
template <class T=int> T rd()
{
    T res=0;T fg=1;
    char ch=getchar();
    while(!isdigit(ch)) {if(ch=='-') fg=-1;ch=getchar();}
    while( isdigit(ch)) res=(res<<1)+(res<<3)+(ch^48),ch=getchar();
    return res*fg;
}
const int N=200010;
struct node
{
    int l,r;
    ll And,Or;
    ll v,tag;
}tree[N<<2];
int n,m;
void pushup(int u)
{
    tree[u].v=max(tree[u<<1].v,tree[u<<1|1].v);
    tree[u].And=(tree[u<<1].And&tree[u<<1|1].And);
    tree[u].Or=(tree[u<<1].Or|tree[u<<1|1].Or);
}
void put(int u,int v)
{
    tree[u].v+=v,tree[u].And+=v,tree[u].Or+=v,tree[u].tag+=v;
}
void pushdown(int u)
{
    if(!tree[u].tag) return;
    put(u<<1,tree[u].tag),put(u<<1|1,tree[u].tag);
    tree[u].tag=0;
}
void build(int u,int l,int r)
{
    tree[u]={l,r};
    if(l==r) {tree[u].v=tree[u].And=tree[u].Or=rd();return;}
    int mid=l+r>>1;
    build(u<<1,l,mid),build(u<<1|1,mid+1,r);
    pushup(u);
}
void modify1(int u,int l,int r,int v)
{
    if((tree[u].Or&v)==tree[u].Or) return;
    if(l<=tree[u].l&&tree[u].r<=r&&((tree[u].And&v)-tree[u].And==(tree[u].Or&v)-tree[u].Or)) 
        return put(u,(tree[u].And&v)-tree[u].And),void();
    pushdown(u);
    int mid=tree[u].l+tree[u].r>>1;
    if(l<=mid) modify1(u<<1,l,r,v);
    if(r>mid) modify1(u<<1|1,l,r,v);
    pushup(u);
}
void modify2(int u,int l,int r,int v)
{
    if((tree[u].And|v)==tree[u].And) return;
    if(l<=tree[u].l&&tree[u].r<=r&&((tree[u].And|v)-tree[u].And==(tree[u].Or|v)-tree[u].Or)) 
        return put(u,(tree[u].And|v)-tree[u].And),void();
    pushdown(u);
    int mid=tree[u].l+tree[u].r>>1;
    if(l<=mid) modify2(u<<1,l,r,v);
    if(r>mid) modify2(u<<1|1,l,r,v);
    pushup(u);
}
int query(int u,int l,int r)
{
    if(l<=tree[u].l&&tree[u].r<=r) return tree[u].v;
    pushdown(u);
    int mid=tree[u].l+tree[u].r>>1;
    int v=0;
    if(l<=mid) v=max(v,query(u<<1,l,r));
    if(r>mid) v=max(v,query(u<<1|1,l,r));
    return v;
}
int main()
{
    n=rd(),m=rd();
    build(1,1,n);
    while(m--)
    {
        int op=rd(),l=rd(),r=rd(),v;
        if(op!=3) v=rd();
        if(op==1) modify1(1,l,r,v);
        if(op==2) modify2(1,l,r,v);
        if(op==3) printf("%d\n",query(1,l,r));
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值