POJ - 3415 Common Substrings(长度不小于K的公共子串个数)

本文探讨了如何利用后缀数组和单调栈技术来优化求解两个字符串的最长公共子序列问题。通过构建后缀数组并维护单调栈,作者提供了三种不同的题解,展示了如何在O(n log n)时间内找到两个输入字符串间的最长公共子串个数。适合对字符串处理和动态规划感兴趣的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Common Substrings

后缀数组+单调栈
题解1
题解2
题解3

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
typedef long long ll;
// sa[i]: 排名是i位的是第几个后缀
// rk[i]: 第i个后缀的排名是多少
// height[i]: sa[i]与sa[i-1]
const int N=200010;
char s[N],s1[N],s2[N];
int rk[N],sa[N],cnt[N],height[N];
int x[N],y[N];
int n,m,K;
int n1,n2;
void rsort()// x[i] 第一关键字 y[i] 第二关键字 基数排序
{
    for(int i=1;i<=m;i++) cnt[i]=0;
    for(int i=1;i<=n;i++) cnt[x[i]]++;
    for(int i=1;i<=m;i++) cnt[i]+=cnt[i-1];
    for(int i=n;i;i--) sa[cnt[x[y[i]]]--]=y[i];
}
void SA()
{
    n=strlen(s+1);
    m=300;
    for(int i=1;i<=n;i++) x[i]=s[i],y[i]=i;
    rsort();
    for(int k=1;k<=n;k<<=1)
    {
        int p=0;
        for(int i=n-k+1;i<=n;i++) y[++p]=i;// 第二关键字为空字符排在最前面
        for(int i=1;i<=n;i++) if(sa[i]>k) y[++p]=sa[i]-k;
        rsort();swap(x,y);
        
        x[sa[1]]=1,p=1;
        for(int i=2;i<=n;i++)
            x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k]?p:++p);
        if(p==n) break;
        m=p;
    }
    for(int i=1;i<=n;i++) rk[sa[i]]=i;
    // 求height
    
    for(int i=1,j=0;i<=n;i++)
    {
        if(j) --j;
        while(s[i+j]==s[sa[rk[i]-1]+j]) j++;
        height[rk[i]]=j;
    }
}
int init()
{
    n1=strlen(s1+1);
    n2=strlen(s2+1);
    for(int i=1;i<=n1;i++) s[i]=s1[i];
    s[n1+1]='*';
    for(int i=1;i<=n2;i++) s[i+n1+1]=s2[i];
    s[n1+n2+1+1]='\0';
    return (n1+n2+1);
}
int st[N][2];
ll solve()
{
    ll ans=0,tot=0;//当前栈里的后缀与将要入栈的后缀的公共字串的个数
    // A前 B后
    int tt=0;
    for(int i=1;i<=n;i++)
    {
        if(height[i]<K){tt=0,tot=0;continue;}
        
        int cnt=0;// 与以后入栈的序列lcp是height[i]的数目
        if(sa[i-1]<=n1) // 属于第一个字符串
        {
            cnt++;
            tot+=height[i]-K+1;
        }
        while(tt&&height[i]<=st[tt][0])
        {
            tot-=1ll*(st[tt][0]-height[i])*st[tt][1];// 由于更小的height[i]导致原先栈中的lcp多算st[tt][0]-height[i]
            cnt+=st[tt][1];
            tt--;
        }
        st[++tt][0]=height[i];
        st[tt][1]=cnt;
        if(sa[i]>n1+1) ans+=tot;// 属于第二个字符串
    }
    // B前 A后
    tt=0;
    for(int i=1;i<=n;i++)
    {
        if(height[i]<K){tt=0,tot=0;continue;}
        
        int cnt=0;
        if(sa[i-1]>n1+1) // 属于第一个字符串
        {
            cnt++;
            tot+=height[i]-K+1;
        }
        while(tt&&height[i]<=st[tt][0])
        {
            tot-=1ll*(st[tt][0]-height[i])*st[tt][1];
            cnt+=st[tt][1];
            tt--;
        }
        st[++tt][0]=height[i];
        st[tt][1]=cnt;
        if(sa[i]<=n1+1) ans+=tot;// 属于第二个字符串
    }
    return ans;
}
int main()
{
    
    while(scanf("%d",&K),K)
    {
        scanf("%s%s",s1+1,s2+1);
        
        n=init();
        SA();
        printf("%lld\n",solve());
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值