深度学习基础篇之循环神经网络(RNN)

前面我们讲了DNN,以及DNN的特例CNN的模型及其前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联。今天我们就讨论另一类模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks,以下简称RNN),它广泛的用于自然语言处理中的语音识别、手写识别及机器翻译等。

1、RNN概述

在前面的DNN和CNN中,训练样本的输入和输出是比较确定的。但是有一类问题DNN和CNN不好解决,就是训练样本输入是连续的序列,且序列的长短不一,比如基于时间的序列:一段段连续的语音、一段段长短不一的手写文字。这些序列比较长,而且长度不一,比较难直接的拆分一个个独立的样本来通过DNN/CNN进行训练。

对于这类问题,RNN会比较擅长。那么RNN是怎么做到的呢?RNN假设我们的样本是基于序列的,比如是从序列索引111到序列索引nnn的。对于这其中的任意序列索引号ttt,它对应的输入是样本序列中的x(t)x^{(t)}x(t)。模型在序列索引ttt位置的隐藏状态h(t)h^{(t)}h(t),由x(t)x^{(t)}x(t)和在t−1t-1t1位置的隐藏状态h(t−1)h^{(t-1)}h(t1)共同决定。在任意序列索引号ttt,我们对应的模型输出是o(t)o^{(t)}o(t)。通过预测输出o(t)o^{(t)}o(t)和训练序列真实输出y(t)y^{(t)}y(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值