深度学习基础篇之长短记忆递归神经网络(LSTM)

在循环神经网络(RNN)模型中,我们总结了RNN模型的优缺点。由于RNN有梯度消失的问题,因此很难处理长序列的数据。于是有人对RNN做了改进,得到了RNN的特例LSTM(Long Short-Term Memory),它可以避免常规RNN的梯度消失问题,因此在工业界得到了广泛的应用。

1、从RNN到LSTM

在RNN模型里,RNN具有如下的结构,每个序列索引位置ttt都有一个隐藏状态h(t)h^{(t)}h(t)
在这里插入图片描述
如果我们略去每层都有的o(t)、L(t)、y(t)o^{(t)}、L^{(t)}、y^{(t)}o(t)L(t)y(t),则RNN模型可以简化为下图的形式:
在这里插入图片描述
图中可以清晰的看出隐藏状态h(t)h^{(t)}h(t)x(t)x^{(t)}x(t)h(t−1)h^{(t-1)}h(t1)得到。得到h(t)h^{(t)}h(t)后一方面用于当前层的模型损失,另一方面用于计算下一层的h(t+1)h^{(t+1)}h(t+1)

由于RNN梯度消失的问题,大牛们对序列索引位置ttt的隐藏结构做了改进,通过一些复杂结构避免了梯度的消失问题,这样的特殊RNN就是我们的LSTM。由于LSTM有很多的变种,这里以我们最常见的LSTM为例讲述,LSTM的结构如下图:
在这里插入图片描述
可以看到LSTM的结构比RNN复杂的多,下面具体讲下LSTM模型的结构。

2、LSTM模型结构解析

上面我们给出了LSTM的模型结构,下面我们就一点点的剖析LSTM模型在每个序列索引位置ttt时刻的内部结构。

从上图可以看出,在每个序列索引位置ttt时刻向前传播的除了和RNN一样的隐藏状态h(t)h^{(t)}h(t),还多了另一个隐藏状态,如图中上面的横线。这个隐藏状态我们一般称之为细胞状态(Cell State),记为C(t)C^{(t)}C(t)。如下图所示:
在这里插入图片描述
除了细胞状态,LSTM图中还有很多各种各样的结构,这些结构一般被称为门控结构(Gate)。LSTM在每个序列索引位置ttt的门一般包括遗忘门、输入门和输出门三种,每个门的用途如下图所示。
在这里插入图片描述

2.1 LSTM之遗忘门

遗忘门(forget gate)顾名思义,是控制是否遗忘的,在LSTM中以一定概率控制是否遗忘上一层的隐藏细胞状态,遗忘门子结构如下图所示:
在这里插入描述
图中的输入包括上一序列的隐藏状态h(t−1)h^{(t-1)}h(t1)和本序列的x(t)x^{(t)}x(t),通过激活函数sigmoid得到遗忘门f(t)f^{(t)}f(t)。由于sigmoid的输出f(t)f^{(t)}f(t)在[0, 1]之间,因此这里的输出f(t)f^{(t)}f(t)代表了遗忘上一层隐藏细胞状态的概率。数学表达式为:
f(t)=σ(Wfh(t−1)+Ufx(t)+bf)f^{(t)} = \sigma(W_fh^{(t-1)}+U_fx^{(t)}+b_f) f(t)=σ(Wfh(t1)+Ufx(t)+b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值