Facenet 的 TensorFlow 实现

该博客介绍了如何在 TensorFlow 中实现 Facenet 人脸识别,包括 LFW 测试、输入队列、创建输入流水线、神经网络构建、损失函数及训练过程。文中详细解释了 softmax loss 在 Facenet 训练中的应用,并探讨了 center loss 对于提升分类性能的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Facenet 的 TensorFlow 实现

Github link

上一节使用 mtcnn 可以将图片中的人的面部图像切割出来,这一节就要捕捉这些不同人的面部图像的特征,实现人脸识别。这一节参考的是 Google Facenet,其理论基础是文章
FaceNet: A Unified Embedding for Face Recognition and Clustering。这里我们的目标是重写 facenet,将生成的模型导出并 TF Serving 起来。

在参考的 facenet 实现中,与原文不同的是,作者使用了 softmax loss 来代替 triplet loss,这里就先从 train_softmax 开始,完成后再研究 train_triplet。使用 softmax loss 训练 facenet 的步骤可以参考 链接。下文将按照 train_softmax.py 代码的顺序来写。

1. LFW 测试

LFW (Labeled Face in the Wild) 测试集选择了 6000 对人脸组成了人脸辨识图片对,其中 3000 对属于同一个人的 2 张人脸照片,3000 对属于不同的两个人的,每人 1 张人脸照片。测试过程 LFW 给出一对照片,询问测试中的系统两张照片是不是同一个人,系统给出 “是” 或者 “否” 的答案。通过 6000 对人脸测试结果的系统答案与真实答案的比值可以得到人脸识别准确率。所以在给出的 pairs.txt 中,

Bill_Frist  2   9

Larry_Ralston   1   William_Donaldson   6

第一行表示同一个人的第 2 和第 9 张照片,第二行表示两人的照片。所以代码中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值