项目场景:
使用sparkStream接收kafka的数据进行计算,并且打包上传到linux进行spark任务的submit
错误集合:
1.错误1:
Failed to add file:/usr/local/spark-yarn/./myapp/sparkDemo04.jar to Spark environment
java.io.FileNotFoundException: Jar D:\usr\local\spark-yarn\myapp\sparkDemo04.jar not found
WARN ProcfsMetricsGetter: Exception when trying to compute pagesize, as a result reporting of ProcessTree metrics is stopped
2.windows下ideal中在yarn模式下运行代码出错,显示如下报错
WARN CheckpointReader: Error reading checkpoint from file hdfs://hadoop102:9000/checkpoint6/checkpoint-1637834226000
java.io.IOException: java.lang.ClassCastException: cannot assign instance of java.lang.invoke.SerializedLambda to field org.apache.spark.streaming.dstream.MappedDStream.mapFunc of type scala.Function1 in instance of org.apache.spark.streaming.dstream.MappedDStream
3.报的一些kafka包notfound的问题,这个下面就不讨论了,只需要把对应的包下载后放到spark目录下的jars文件中即可,比如常见的
java.lang.NoClassDefFoundError: org/apache/spark/kafka010/KafkaConfigUpdater
都可以通过添加包的方式解决,如果是spark shell里面出现这种错误,则需要在输入spark-shell命令时,在后面添加 --jars 包路径
最初的代码:
import com.study.stream05_kafka.SparkKafka.createSSC
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import java.lang.System.getProperty
import scala.collection.mutable.ListBuffer
object stream05_kafka {
object SparkKafka{
def createSSC(): _root_.org.apache.spark.streaming.StreamingContext={
// TODO 创建环境对象
// StreamingContext创建时,第一个参数表示环境配置,第二个是数据采集周期
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("kafka2")
sparkConf.set("spark.streaming.stopGracefullyOnShutdown","true")
sparkConf.set("spark.hadoop.fs.defaultFS","hdfs://hadoop102:9000")
sparkConf.set("spark.hadoop.yarn.resoursemanager.address","hadoop103:8088")
val streamingContext: StreamingContext = new StreamingContext(sparkConf, Seconds(3))
streamingContext.checkpoint("hdfs://hadoop102:9000/checkpoint6")
val kafkaPara: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "hadoop102:9092,hadoop103:9092,hadoop104:9092",
ConsumerConfig.GROUP_ID_CONFIG -> "second",
"key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
)
// TODO 逻辑处理
val kafkaDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
streamingContext,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](Set("sparkOnKafka"), kafkaPara)
)
val num: DStream[String] = kafkaDS.map(_.value())
val result = num.map(
line=>{
val flows = line.split(",")
val up=flows(1).toInt
val down=flows(2).toInt
(flows(0),(up,down,up+down))
}
).updateStateByKey(
(queueValue, buffValue: Option[(Int,Int,Int)]) => {
val cur=buffValue.getOrElse((0,0,0))
var curUp=cur._1
var curDown=cur._2
for (elem <- queueValue) {
curUp+=elem._1
curDown+=elem._2
}
Option((curUp,curDown,curUp+curDown))
}
)
result.print()
streamingContext
}
}
def main(args: Array[String]): Unit = {
println("**************")
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
System.getProperties.setProperty("HADOOP_USER_NAME", "hadoop")
val streamingContext = StreamingContext.getActiveOrCreate("hdfs://hadoop102:9000/checkpoint6", ()=>createSSC())
streamingContext.start()
// 2.等待关闭
streamingContext.awaitTermination()
}
}
原因分析:
首先,这里指出如果要打包到linux 下在yarn模式下进行spark的submit,需要设置master为yarn,至于是yarn-client还是yarn-cluster需要提交任务时指定,默认是client。我这里写成local,所以一开始都是windows下可以正常连接kafka拿到数据进行计算,但是linux下就不行了。归根结底没有连接yarn。
1.错误1是因为windows下spark任务提交的时候,找不到你的jar包,试想一下spark的spark-submit命令,需要指定jar包以及class
2.这个是序列化问题还是广播变量不适合于检查点的问题,查资料发现广播变量的内容写入hdfs后就难以恢复了,这里可以把错误定位到StreamingContext.getActiveOrCreate里面,这里有时候可以正常进行数据恢复,但是有时候就会报错。解决方法还没找到,我就直接换检查点路径了,一般生产环境下也只有代码升级的情况下会关闭流计算,这里就没有深究,希望大神可以解答一下。猜测是读取检查点数据的时候序列化出了问题
解决方案:
错误1的解决:所以如果要在windows下运行,需要先使用mvn package或者build artifacts对程序进行打包,然后对sparkConf.setJars指定包的路径,这样在windows下就可以正常运行了
错误2的解决:这里我就换检查点了
最后贴一下我最终成功运行的代码
import com.study.stream05_kafka.SparkKafka.createSSC
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import java.lang.System.getProperty
import scala.collection.mutable.ListBuffer
object stream05_kafka {
object SparkKafka{
def createSSC(): _root_.org.apache.spark.streaming.StreamingContext={
// TODO 创建环境对象
// StreamingContext创建时,第一个参数表示环境配置,第二个是数据采集周期
val sparkConf = new SparkConf().setMaster("yarn").setAppName("kafka2").set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
sparkConf.set("spark.streaming.stopGracefullyOnShutdown","true")
sparkConf.set("spark.hadoop.fs.defaultFS","hdfs://hadoop102:9000")
sparkConf.set("spark.hadoop.yarn.resoursemanager.address","hadoop103:8088")
val streamingContext: StreamingContext = new StreamingContext(sparkConf, Seconds(3))
streamingContext.checkpoint("hdfs://hadoop102:9000/checkpoint7")
val kafkaPara: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "hadoop102:9092,hadoop103:9092,hadoop104:9092",
ConsumerConfig.GROUP_ID_CONFIG -> "second",
"key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
)
// TODO 逻辑处理
val kafkaDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
streamingContext,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](Set("sparkOnKafka"), kafkaPara)
)
val num: DStream[String] = kafkaDS.map(_.value())
val result = num.map(
line=>{
val flows = line.split(",")
val up=flows(1).toInt
val down=flows(2).toInt
(flows(0),(up,down,up+down))
}
).updateStateByKey(
(queueValue, buffValue: Option[(Int,Int,Int)]) => {
val cur=buffValue.getOrElse((0,0,0))
var curUp=cur._1
var curDown=cur._2
for (elem <- queueValue) {
curUp+=elem._1
curDown+=elem._2
}
Option((curUp,curDown,curUp+curDown))
}
)
result.print()
streamingContext
}
}
def main(args: Array[String]): Unit = {
println("**************")
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
System.getProperties.setProperty("HADOOP_USER_NAME", "hadoop")
val streamingContext = StreamingContext.getActiveOrCreate("hdfs://hadoop102:9000/checkpoint7", ()=>createSSC())
// new Thread(new MonitorStop(streamingContext)).start()
streamingContext.start()
// 2.等待关闭
streamingContext.awaitTermination()
}
}
另外,打包的时候不要添加setJars,否则还是会报错,报的是什么已经忘了,这篇博客也是在我解决问题之后写的,没有记录太多报错,如果我没记错的话可能会报这种错误
cannot assign instance of java.lang.invoke.SerializedLambda to field org.apache.spark.rdd.MapPartitionsRDD.f of type scala.Function3 in instance of org.apache.spark.rdd.MapPartitionsRDD
困惑:
为了解决这个bug,也是在yarn日志和spark日志来回看,看了一天,最让我头疼的就是spark-submit使用control+z退出后,spark-submit进行还会在后台运行,我都怀疑是不是我的kill -9 操作使检查点损坏导致数据恢复失败的,请问各路大神怎么才能结束sparkSubmit进程?