2. 简单动态字符串(SDS)
- 定义:
struct sdshdr {
int len; // buf中已使用字节数量(不包括末尾'\0')
int free; // 未使用字节
char buf[]; // 字节数组,用于保存字符串
};
被用于保存数据库中的字符串值,或用作缓冲区。
- 与C字符串区别:
- 常数复杂度获取字符串长度;
- 缓冲区不会溢出
- 可用空间不够 会扩展空间
- 减少修改字符串的内存重分配次数
- 空间预分配(free,不够就分配min(1MB, len))
- 惰性空间释放(收回到free,手动api释放)
- 二进制安全
- API都是二进制安全的。SDS使用
len
判断字符串结束,而不是依靠'\0'
,因此buf保存的是一系列二进制数据。
- API都是二进制安全的。SDS使用
- 兼容部分C字符串函数
- buf也是以
'\0'
结尾
- buf也是以
3. 链表
typedef struct listNode {
// 前置节点
struct listNode *prev;
// 后置节点
struct listNode *next;
// 节点的值
void *value;
} listNode;
typedef struct list {
// 表头节点
listNode *head;
// 表尾节点
listNode *tail;
// 链表所包含的节点数量
unsigned long len;
// 节点值复制函数
void *(*dup)(void *ptr);
// 节点值释放函数
void (*free)(void *ptr);
// 节点值对比函数
int (*match)(void *ptr, void *key);
} list;
多态: 链表节点使用void*
指针来保存节点值, 并且可以通过 list 结构的dup
、free
、match
三个属性为节点值设置类型特定函数, 所以链表可以用于保存各种不同类型的值。
4.字典
底层实现:哈希表
每个哈希表节点保存一个键值对
// dict.h/dictht
typedef struct dictht {
// 哈希表数组
// 默认实现存放四个指针
dictEntry **table;
// 哈希表大小
unsigned long size;
// 哈希表大小掩码,用于计算索引值
// 总是等于 size - 1
unsigned long sizemask;
// 该哈希表已有节点的数量
unsigned long used;
} dictht;
哈希表节点:
typedef struct dictEntry {
// 键
void *key;
// 值
union {
void *val;
uint64_t u64;
int64_t s64;
} v;
// 指向下个哈希表节点,形成链表
struct dictEntry *next;
} dictEntry;
- 字典
字典被广泛用于实现 Redis 的各种功能, 其中包括数据库和哈希键。
当字典被用作数据库的底层实现, 或者哈希键的底层实现时, Redis 使用MurmurHash2
算法来计算键的哈希值。
typedef struct dict {
// 类型特定函数
dictType *type;
// 私有数据
void *privdata;
// 哈希表
// ht[0]
// ht[1] 对ht[0]rehash时使用
dictht ht[2];
// rehash 索引 记录rehash进度
// 当 rehash 不在进行时,值为 -1
int rehashidx; /* rehashing not in progress if rehashidx == -1 */
} dict;
type
属性和privdata
属性是针对不同类型的键值对, 为创建多态字典而设置的
typedef struct dictType {
// 计算哈希值的函数
unsigned int (*hashFunction)(const void *key);
// 复制键的函数
void *(*keyDup)(void *privdata, const void *key);
// 复制值的函数
void *(*valDup)(void *privdata, const void *obj);
// 对比键的函数
int (*keyCompare)(void *privdata, const void *key1, const void *key2);
// 销毁键的函数
void (*keyDestructor)(void *privdata, void *key);
// 销毁值的函数
void (*valDestructor)(void *privdata, void *obj);
} dictType;
当字典被用作数据库的底层实现, 或者哈希键的底层实现时, Redis 使用MurmurHash2
算法来计算键的哈希值。
Redis 计算哈希值和索引值的方法:
// 使用字典设置的哈希函数,计算键 key 的 哈希值
hash = dict->type->hashFunction(key);
// 使用哈希表的 sizemask 属性和哈希值,计算出 索引值
// 根据情况不同, ht[x] 可以是 ht[0] 或者 ht[1]
index = hash & dict->ht[x].sizemask;
链地址法解决冲突,头插法。
// 负载因子 = 哈希表已保存节点数量 / 哈希表大小
load_factor = ht[0].used / ht[0].size
当哈希表的负载因子超过某一个值,哈希表进行rehash
(扩展或收缩)
为字典的 ht[1] 哈希表分配空间, 这个哈希表的空间大小取决于要执行的操作, 以及 ht[0] 当前包含的键值对数量 (也即是 ht[0].used
属性的值):
- 如果执行的是扩展操作, 那么 ht[1] 的大小为第一个大于等于
ht[0].used * 2
的 2^n (2 的 n 次方幂); - 如果执行的是收缩操作, 那么 ht[1] 的大小为第一个大于等于
ht[0].used 的 2^n
。
将ht[0]的所有键值对rehash到ht[1]中,释放 ht[0] , 将 ht[1] 设置为 ht[0] , 并在 ht[1] 新创建一个空白哈希表。
- 这个 rehash 动作并不是一次性、集中式地完成的, 而是分多次、渐进式地完成的
渐进式 rehash 的好处在于它采取分而治之的方式, 将 rehash 键值对所需的计算工作均摊到对字典的每个添加、删除、查找和更新操作上, 从而避免了集中式 rehash 而带来的庞大计算量。
在进行渐进式 rehash 的过程中, 字典会同时使用 ht[0] 和 ht[1] 两个哈希表, 所以在渐进式 rehash 进行期间, 字典的删除(delete)、查找(find)、更新(update)等操作会在两个哈希表上进行: 比如说, 要在字典里面查找一个键的话, 程序会先在 ht[0] 里面进行查找, 如果没找到的话, 就会继续到 ht[1] 里面进行查找
另外,rehash期间, 新添加到字典的键值对一律会被保存到 ht[1] 里面, 而 ht[0] 则不再进行任何添加操作: 这一措施保证了 ht[0] 包含的键值对数量会只减不增, 并随着 rehash 操作的执行而最终变成空表。
5.跳跃表
跳跃表是可以实现二分查找的有序链表。
- 插入、删除、查找元素的时间复杂度跟红黑树的时间复杂度都是
O(logn)
每个元素插入时随机生成它的level;
最底层包含所有的元素;
如果一个元素出现在level(x),那么它肯定出现在x以下的level中;
每个索引节点包含两个指针,一个向下,一个向右;
-
为什么Redis选择使用跳表而不是红黑树来实现有序集合?
Redis 中的有序集合(zset) 支持的操作:
插入一个元素
删除一个元素
查找一个元素
有序输出所有元素
按照范围区间查找元素(比如查找值在 [100, 356] 之间的数据)
其中,前四个操作红黑树也可以完成,且时间复杂度跟跳表是一样的。但是,按照区间来查找数据这个操作,红黑树的效率没有跳表高。按照区间查找数据时,跳表可以做到 O(logn) 的时间复杂度定位区间的起点,然后在原始链表中顺序往后遍历就可以了,非常高效。