51NOD 1091 线段重叠 51 NOD 1133不重叠线段 贪心

本文探讨了线段重叠与非重叠问题的两种算法实现,一种是找出两条线段的最大重叠长度,另一种是计算能选出多少条互不重叠的线段。通过适当的排序和迭代策略,提供了高效的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


1091 线段的重叠
基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题
收藏
关注
X轴上有N条线段,每条线段包括1个起点和终点。线段的重叠是这样来算的,[10 20]和[12 25]的重叠部分为[12 20]。
给出N条线段的起点和终点,从中选出2条线段,这两条线段的重叠部分是最长的。输出这个最长的距离。如果没有重叠,输出0。
Input
第1行:线段的数量N(2 <= N <= 50000)。
第2 - N + 1行:每行2个数,线段的起点和终点。(0 <= s , e <= 10^9)
Output
输出最长重复区间的长度。
Input示例
5
1 5
2 4
2 8
3 7
7 9
Output示例
4

思路: 对左端点升序排序,右端点降序排序,每次更新右边的最远距离,并拿最远距离和当前最右比较,两者中最小的减去当前左端点的距离与maxn比较,更新最远距离和maxn即可

Code:

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int AX = 5e4+666;

struct Node
{
	int l , r;
}e[AX];
bool cmp( const Node &a , const Node &b){
	if( a.l == b.l ) return a.r > b.r;
	else return a.l < b.l;
}

int main(){

	ios_base::sync_with_stdio(false);
	cin.tie(0);
	int n;
	cin>>n;
	for( int i = 0 ; i < n ; i++ ){
		cin >> e[i].l >> e[i].r;
	}
	sort( e, e + n, cmp );
	int far_r = e[0].r;
	int maxn = 0;
	for( int i = 1 ; i  < n ; i++ ){
		maxn = max( maxn , min(e[i].r , far_r) - e[i].l );
		if( e[i].r > far_r ){
			far_r = e[i].r;
		}
	}
	cout<<maxn<<endl;
	return 0;
}

1133 不重叠的线段

基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题
收藏
关注
X轴上有N条线段,每条线段有1个起点S和终点E。最多能够选出多少条互不重叠的线段。(注:起点或终点重叠,不算重叠)。
例如:[1 5][2 3][3 6],可以选[2 3][3 6],这2条线段互不重叠。
Input
第1行:1个数N,线段的数量(2 <= N <= 10000)
第2 - N + 1行:每行2个数,线段的起点和终点(-10^9 <= S,E <= 10^9)
Output
输出最多可以选择的线段数量。
Input示例
3
1 5
2 3
3 6
Output示例
2

这个和上面的是一种类型,上边求重叠长度,这个求不重叠数量,相对难一点点。 不过差不多。

思路:还是对左右排序,这次是对右端点升序排序,左端点降序,每次更新右端点。因为是要求不重叠,肯定要覆盖范围小才好。

#include <iostream>
#include <algorithm>
using namespace std;
const int AX = 1e4+666;

struct  Node
{
	int l , r ;
}e[AX];

bool cmp( const Node &a , const Node &b ){
	if( a.r == b.r ) return a.l > b.l;
	else return a.r < b.r;
}

int main(){

	ios_base::sync_with_stdio(false);
	cin.tie(0);
	int n;
	cin>>n;
	for( int i = 0 ; i < n ; i++ ) {
		cin >> e[i].l >> e[i].r;
	}
	sort( e , e + n ,cmp );
	int far_r = e[0].r;
	int res = 1;
	for( int i = 1 ; i < n ; i++ ){
		if( e[i].l >= far_r  ) {
			res++;
			far_r = e[i].r;
		}
	}	
	cout<<res<<endl;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值