Python数据分析NumPy和pandas(二十三、数据清洗与预处理之五:pandas的分类类型数据)

pandas的分类类型数据(Categorical Data)

这次学习使用Categorical Data,在某些 pandas 操作中使用分类类型能实现更好的性能和减少内存使用。另外还学习一些工具,这些工具有助于在统计和机器学习应用程序中使用分类数据。

一.背景

通常,表中的列会包含一组具有非重复值的同类型实例,之前学习的 unique 和 value_counts 函数,它们使我们能够从数组中提取不同的值并分别计算它们的频率。

import numpy as np
import pandas as pd

np.random.seed(12345)
# []*2 表示重复两次
values = pd.Series(['apple', 'orange', 'apple', 'apple'] * 2)
print(values)

# 使用unique()对values去重,输出一个列表
print(pd.unique(values))

# 使用value_counts()对values中出现的不同值计算出现的频次(计数),输出一个Series
print(values.value_counts())

输出结果:

0     apple
1    orange
2     apple
3     apple
4     apple
5 &nb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FreedomLeo1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值