pandas的分类类型数据(Categorical Data)
这次学习使用Categorical Data,在某些 pandas 操作中使用分类类型能实现更好的性能和减少内存使用。另外还学习一些工具,这些工具有助于在统计和机器学习应用程序中使用分类数据。
一.背景
通常,表中的列会包含一组具有非重复值的同类型实例,之前学习的 unique 和 value_counts 函数,它们使我们能够从数组中提取不同的值并分别计算它们的频率。
import numpy as np
import pandas as pd
np.random.seed(12345)
# []*2 表示重复两次
values = pd.Series(['apple', 'orange', 'apple', 'apple'] * 2)
print(values)
# 使用unique()对values去重,输出一个列表
print(pd.unique(values))
# 使用value_counts()对values中出现的不同值计算出现的频次(计数),输出一个Series
print(values.value_counts())
输出结果:
0 apple
1 orange
2 apple
3 apple
4 apple
5 &nb