Python数据分析NumPy和pandas(三十二、数据拆分-应用-合并)

最常用的 GroupBy 方法是 apply,apply 将正在操作的对象拆分为多个片段,在每个片段上调用传递给它函数,然后尝试连接这些片段。

还是用前面的小费数据集tips.csv,它的内容如下图:

假设我们想按smoker进行分组并选择前五个tip_pct值:

import numpy as np
import pandas as pd

tips = pd.read_csv("examples/tips.csv")
tips["tip_pct"] = tips["tip"] / tips["total_bill"]

# 自定义函数top,根据选择列tip_pct值最大的前n行
def top(df, n=5, column="tip_pct"):
    return df.sort_values(column, ascending=False)[:n]

# 然后按 smoker 进行分组,并使用top函数调用 apply:
result = tips.groupby("smoker").apply(top)
print(result)

输出结果:

total_bill tip smo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FreedomLeo1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值