Python数据分析NumPy和pandas(三十六、日期范围、频率和偏移)

pandas 中的通用时间序列是不规则的,也就是说,它们没有固定的频率。但是,我们通常希望相对于固定频率(例如每天、每月或每 15 分钟)工作,pandas 有一整套标准时间序列频率和工具,用于重采样、推断频率和生成固定频率日期范围。例如,可以通过调用 resample 将样本时间序列转换为固定的每日频率:

import numpy as np
import pandas as pd
from datetime import datetime
np.random.seed(12345)

dates = [datetime(2024, 1, 2), datetime(2024, 1, 5),
         datetime(2024, 1, 7), datetime(2024, 1, 8),
         datetime(2024, 1, 10), datetime(2024, 1, 12)]
ts = pd.Series(np.random.standard_normal(6), index=dates)
print(ts)

resampler = ts.resample("D")
print(resampler)

以上输出:

ts.resample("D")中的字符串 “D” 被解释为每日频率。频率之间的转换或重新采样是一个足够大的主题,下面先学习如何使用基频及其倍数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FreedomLeo1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值