pandas 中的通用时间序列是不规则的,也就是说,它们没有固定的频率。但是,我们通常希望相对于固定频率(例如每天、每月或每 15 分钟)工作,pandas 有一整套标准时间序列频率和工具,用于重采样、推断频率和生成固定频率日期范围。例如,可以通过调用 resample 将样本时间序列转换为固定的每日频率:
import numpy as np
import pandas as pd
from datetime import datetime
np.random.seed(12345)
dates = [datetime(2024, 1, 2), datetime(2024, 1, 5),
datetime(2024, 1, 7), datetime(2024, 1, 8),
datetime(2024, 1, 10), datetime(2024, 1, 12)]
ts = pd.Series(np.random.standard_normal(6), index=dates)
print(ts)
resampler = ts.resample("D")
print(resampler)
以上输出:
ts.resample("D")中的字符串 “D” 被解释为每日频率。频率之间的转换或重新采样是一个足够大的主题,下面先学习如何使用基频及其倍数。