Problem Description
There are many students in PHT School. One day, the headmaster whose name is PigHeader wanted all students stand in a line. He prescribed that girl can not be in single. In other words, either no girl in the queue or more than one girl stands side by side. The case n=4 (n is the number of children) is like
FFFF, FFFM, MFFF, FFMM, MFFM, MMFF, MMMM
Here F stands for a girl and M stands for a boy. The total number of queue satisfied the headmaster’s needs is 7. Can you make a program to find the total number of queue with n children?
Input
There are multiple cases in this problem and ended by the EOF. In each case, there is only one integer n means the number of children (1<=n<=1000)
Output
For each test case, there is only one integer means the number of queue satisfied the headmaster’s needs.
Sample Input
1
2
3
Sample Output
1
2
4
规则:女孩至少要2个在一起
求f(n)
一 , 当最后一个是男生M,则前 n-1 只要符合规则的排列即可,有f(n-1)个
二,当最后一个为女生F,则有两种情况
1)最后两个都为女生 ,则则前 n-2 只要符合规则的排列即可,有f(n-2)个
~~~~|FF 有f(n-2)个
2)最后两个都为女生 ,则则前 n-2 也可以不符合规则, 此时第n-2个是F,第n-3是M,此时前n-2个不符合规则,但因为第n-2 的F与第n-1 的F相邻,所以整体符合规则,有f(n-4)个
~~~~|MFFF 有f(n-4)个
```
#include<stdio.h>
int f[1001][246];
void init() {
int i,j,k,g;
k=1;
f[1][1]=1;
f[1][0]=1;//f[i][0]表示第i个数位数
f[2][1]=2;
f[2][0]=1;
f[3][1]=4;
f[3][0]=1;
f[4][1]=7;
f[4][0]=1;
for(i=5; i<=1000; i++) {
g=0;
for(j=1; j<=k; j++) {
f[i][j]=f[i-1][j]+f[i-2][j]+f[i-4][j]+g;
g=f[i][j]/10;
f[i][j]%=10;
f[i][j+1]=g;
}
while(f[i][j]>0) {
k++;
f[i][j+1]=f[i][j]/10;
f[i][j]%=10;
j++;
}
f[i][0]=k;
}
}
int main() {
int n,i;
init();
while(scanf("%d",&n)!=EOF) {
for(i=f[n][0]; i>=1; i--)
printf("%d",f[n][i]);
printf("\n");
}
return 0;
}
```