opencv各种滤波器的用法

本文通过使用Python的OpenCV库,展示了多种图像滤波技术,包括平均滤波、高斯滤波、中值滤波及双边滤波,并通过实例对比了不同滤波方法的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('test2.jpg')
kernel = np.ones((5,5),np.float32)/25
dst = cv2.filter2D(img,-1,kernel)#

blur = cv2.GaussianBlur(img,(5,5),0)#

median = cv2.medianBlur(img,5)

#9 邻域直径,两个 75 分别是空间高斯函数标准差,灰度值相似性高斯函数标准差
bila = cv2.bilateralFilter(img,9,75,75)

plt.subplot(231),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(232),plt.imshow(dst),plt.title('Averaging')
plt.xticks([]), plt.yticks([])
plt.subplot(233),plt.imshow(blur),plt.title('gauss')
plt.xticks([]), plt.yticks([])
plt.subplot(234),plt.imshow(median),plt.title('medium')
plt.xticks([]), plt.yticks([])
plt.subplot(235),plt.imshow(bila),plt.title('bila')
plt.xticks([]), plt.yticks([])

plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值