基于计算机视觉的水果分级检测系统的设计
摘 要
计算机视觉应用于水果的品质检测,带来了许多方便。既可以提高检测的精度、准确度。又节省了大量的劳动力,让人们从繁重的人工检测工作中解脱出来。本文以苹果为研究对象,研究了计算机视觉技术应用于水果分级检测的基本理论和方法。
研究了苹果图像的预处理,包括平滑滤波、图像的灰度化以及图像的二值化。
研究了苹果的大小检测。先把苹果图像与背景分离,再计算出苹果图像的像素点数,通过预先测定出的一个像素点与真是面积的比值,进而算出苹果的真是面积,最后通过直径的大小来确定苹果大小等级。
研究了苹果的颜色检测,通过HIS颜色模型中的H分量来判定出苹果的着色面积,通过着色面积与苹果的大小做比,得出苹果的着色比,通过着色比来判定苹果颜色等级。
研究了苹果的缺陷检测。对苹果图像的灰度化,再通过用合适的阀值二值化图像确定出缺陷区域,在通过一些简单的运算得出缺陷的面积,通过缺陷的面积确定苹果的缺陷等级。
关键词:计算机视觉,图像处理,水果分级
目 录
1绪论
1.1 研究的目的与意义
自古以来我们国家就是一个农业大国,农业在国民收入中占据了很大的比重。而在农业中水果的种植又十分广泛。但一直以来我国水果出口情况一直不如国外,这不是说我国的水果质量比别国的差,而是我国的水果在后序的分级方面做的比不上外国。现在随着人们的生活水平提高,对于质量的要求就高了,所以说水果的分级就显得十分的必要。但是我国的水果分级工作大部分是靠人力完成,这就产生了很多的问题,比如说:工作量十分大,要占用许多的劳动力来完成这件事,而且效率也不高;再者说人的疲劳和天生对色泽等方面的敏感度不高,同样对分级的质量产生影响。虽然近些年我国在机器检测中取得了一些成就,使得在水果的大小、颜色方面的检测可以让机器代替人工去完成。但由于检测方法比较简单,所以完全达不到市场的要求和人的期望。
随着计算机的迅速发展,计算机视觉技术被广泛应用于农产品检测中。所以通过将计算机技术和图像处理等许多学科知识综合起来,先通过对水果大小、颜色、缺陷各个方面分别进行检测,再对各个检测结果进行综合分析。这样得出的判断包含的方面比较全面,而且图像处理知识的应用使得检测更加精确。这样水果的检测才达到真正意义上的智能化。本课题就是介绍了基于计算机图像处理的水果分级检测。
1.2 国内外研究的现状
1.2.1 国外情况
国外在水果的计算机视觉检测方面发展比较早,并已经取得了很多成果。同样在国外这方面的研究中,缺陷的检测同样也是一个难题。
Yang Q[1]首先对水果的图像进行分割,因为水果表面各个地方的缺陷大小不同,程度也不一样。这样分割后可以使得水果的图像,受光反射等方面的影响程度减小。可以使得缺陷部分如斑块、擦伤等可以分开进行检测。这样的分割不仅可以使得研究方面,同样也是十分必要的。之后Yang Q又进行了改进,他通过采用蛇形算法达到更精确的分割,具有更高的抗干扰能力,对于目标的局部模糊也不敏感。使得初始的轮廓更靠近真实状态
Leemans[2]在缺陷检测中运用另外的方法,他把水果像素点逐个和水果的平均颜色值进行比较。差别大的则认为是缺陷,反之则认为是正常的组织。但这种方法存在明显的缺点,当缺陷与正常组织对比明显时十分有效,但如果对比不是很明显时,误差就比较大。
Shalin[3]等利用X射线的线扫描设备来检测水果的创伤,以空间边缘特征和离散余弦变换系数为特征,利用人工神经网络进行分类,这种方法对旧的创伤精确度挺高的,但对于新的创伤的精确度却比较低。
1.2.2国内情况
国内在水果检测方面的起步比较晚,但是发展十分迅速。
冯斌等[4]通过确定水果的形心、轴心等,再通过计算得出了水果的大小、尺寸,精确度十分高。
高华等[5]提出用傅里叶描述子,傅里叶系数等来确定水果的大体轮廓。进而对水果的形状规则度做出判断。
林开颜[6]等和高华的方法有所不同,他们先用“基于梯度法的彩色图像边缘检测”确定水果的边界,然后通过对边界进行傅里叶变换,用傅里叶系数近似确定出水果的形状,再对形状的不规则度进行判别。
胡海晴等[7]对水果图像进行处理,将图像的RGB模型转换为HIS模型后,通过色度比较来确定水果的成熟度等级。而度量器则使用Hamming网络结构作为人工神经网络的结构,运算速度高而且判定的精确度也很高。
李庆中等[8]通过双金字塔数据形式的盒维数快速计算,用得到的分形维数作为可疑缺陷区的参数,再通过BP形网络结构的人工神经网络,最终实现对梗、萼和缺陷的准确判断。解决了梗萼与缺陷区判定这一难题。
1.3 研究内容
本课题是基于计算机视觉的水果分级检测,以苹果为研究对象。在总结了国内外的研究成果的基础上,选用了运行速度快、可靠性高的方法。对苹果依次进行了图像采集、灰度化、二值化、图像分割、颜色模型转换。再通过苹果的分级特征对苹果进行分级。保证了分级结果的准确性和实用性。主要的研究内容包括:
通过采集到的苹果图像,经过一些处理后。提取出苹果大小的特征值建立分级模型。根据苹果检测出的结果作出判断,来定出水果的大小等级。
对苹果的表面颜色进行分析,建立分级模型,提取出颜色特征值,进而判定出水果颜色的等级。
对苹果进行灰度化,并选择适当的阀值对灰度化后的图像进行二值化,确定缺陷的区域。在通过计算缺陷面积得出缺陷的等级。
1.4 技术路线
采用CCD摄像头和图像采集卡工具完成对图像的采集。并传输到计算机上为后续的图像处理做准备。
对采集到得图像进行图像的预处理,使得后续的检测分级更加的精确。
确定图像的分级参数,从水果图像的大小、颜色和缺陷这三个方面来分别进行分级。
对各个方面的分级结果进行综合,得出水果的品质等级。
1.5 本章小结
本章通过分析水果分级检测研究的意义,以及计算机视觉技术在水果分级中的应用。确定了研究的方向为基于机器视觉技术进行苹果外观品质检测,研究目标是设计实时的水果分级系统。根据研究目的及研究内容,确定了研究的技术路线。
<