全能OCR神器GOT-OCR2.0整合包部署教程

项目地址:https://github.com/Ucas-HaoranWei/GOT-OCR2.0

整合包下载:https://pan.quark.cn/s/3757da820e65

显卡建议使用RTX 30以上的


①先安装NVIDIA显卡驱动:

https://www.nvidia.cn/drivers/lookup/

输入显卡型号搜索就行

②安装CUDA 工具包

cuda_12.6.1_560.94_windows.exe

链接:https://pan.quark.cn/s/79e3930d439c

版本对应关系参考:

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

编辑系统环境变量参考:

CUDA_HOME=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6 
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6\bin 
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6\libnvvp

  1. 验证 CUDA 版本

    #确认输出显示 CUDA 版本为 12.6
    nvcc --version 
    双击打开脚本"D:\GOT-OCR2.0\查看cuda版本.bat"(在整合包里)

③安装cuDNN

https://developer.nvidia.com/cudnn-downloads?target_os=Windows

cudnn-windows-x86_64-9.4.0.58_cuda11-archive.zip

链接:https://pan.quark.cn/s/793bdc4a379f

找到 CUDA 的安装目录,其下也存在 binincludelib 三个目录

将 cuDNN 解压后得到的 binincludelib 三个目录中的内容分别复制到 CUDA 安装目录下的对应目录中。

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6

在 CUDA 的安装目录下的 extras\demo_suite 目录下找到 bandwidthTest.exedeviceQuery.exe 两个文件,分别在 ⌈命令提示符⌋ 中执行(直接双击可能会一闪而过)若均执行成功,说明 cuDNN 安装成功。

整合包使用:

自解压:GOT-OCR2.0Win整合包0920.exe

解压到D盘根目录,如图

确保python路径正确 D:\GOT-OCR2.0\GOT-OCR2.0\.pyenv\pyenv-win\versions\3.10.11

测试flash-attn.bat

start.cmd

1、测试简单文本识别

识别结果:劳动密集型企业

2、给出其他示例代码,手动复制执行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云樱梦海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值