线段树
线段树不一定是满二叉树,也不一定为完全二叉树
满二叉树
除了叶子节点,每个节点都有左右两个子树
完全二叉树
不一定是满二叉树,但他不满的那部分一定位于整个树的右下方
# 所以将线段树没满的那部分看成空,凑成满二叉树,这样就可以用堆的方式计算得到索引,这样在数组中就能对线段树进行操作
一定是平衡二叉树(任意节点左右子树高度差不超过一),堆也是平衡二叉树
经典问题:区间染色 , 区间查询
区间固定,里面元素需要更新和查询
以求和操作为例,线段树中每个节点存的都是一个区间的元素和,从上到下不断细分
实现
/**
* @author gwj
* 自定义融合器
*/
public interface Merger<E> {
public E merge(E a,E b);
}
/**
* @author gwj
* 线段树
*/
public class SegmentTree<E> {
private E[] data;
private E[] tree;
private Merger<E> merger;
/**
* 让用户自定义线段树节点的融合方式
*/
public SegmentTree(E[] arr,Merger<E> merger) {
this.merger = merger;
data = arr;
//需要给线段树中看成空(没满的)的那部分留足空间
tree = (E[])new Object[4 * arr.length];
buildSegmentTree(0,0,arr.length - 1);
}
private void buildSegmentTree(int treeIndex, int start, int end) {
if (start == end) {
//只有一个元素
tree[treeIndex] = data[start];
return;
}
int left = left(treeIndex);
int right = right(treeIndex);
int mid = start + (end - start) / 2;
buildSegmentTree(left,start,mid);
buildSegmentTree(right,mid + 1,end);
//按照指定方式融合
tree[treeIndex] = merger.merge(tree[left], tree[right]);
}
public int getSize() {
return data.length;
}
public E get(int index) {
if (index < 0 || index >= data.length) {
throw new IllegalArgumentException("index is illegal");
}
return data[index];
}
public E query(int leftRange,int rightRange) {
if (leftRange < 0 || leftRange >= data.length || rightRange < 0 || rightRange >= data.length) {
throw new IllegalArgumentException("index is illegal");
}
return query(0,0,data.length - 1, leftRange,rightRange);
}
/**
* 在以treeIndex索引为根节点的索引范围在[l,r]的区间中查找[leftRange,rightRange]区间
*/
private E query(int treeIndex,int l,int r,int leftRange,int rightRange) {
//两者刚好重合时
if (l == leftRange && r == rightRange) {
return tree[treeIndex];
}
//不重合,在左右子区间寻找
int mid = (l + r) / 2;
int left = left(treeIndex);
int right = right(treeIndex);
if (leftRange >= mid + 1) {
return query(right,mid + 1,r,leftRange,rightRange);
}else if (rightRange <= mid) {
return query(left,l,mid,leftRange,rightRange);
}
//跨越了左右区间
//将要找的区间分成两部分,分别在左右区间寻找,最后融合
E queryLeft = query(left, l, mid, leftRange, mid);
E queryRight = query(right, mid + 1, r, mid + 1, rightRange);
return merger.merge(queryLeft,queryRight);
}
private int parent(int index) {
if (index == 0) {
throw new IllegalArgumentException("无父元素");
}
return (index - 1) / 2;
}
private int left(int index) {
return 2 * index + 1;
}
private int right(int index) {
return 2 * index + 2;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("[");
for (int i = 0; i < tree.length; i++) {
sb.append(" ").append(tree[i]);
}
sb.append("]");
return sb.toString();
}
}