Python常用的五大基础算法介绍

在编程学习中,算法是解决问题的核心逻辑。掌握基础算法不仅能提升代码效率,更能培养结构化思维。本文将通过原理讲解、代码实现和应用场景分析,详细介绍Python中五个常用的基础算法。

一、快速排序(分治思想)

原理
快速排序采用分治策略:选择一个基准值,将数组分为小于基准和大于基准的两部分,递归处理子数组。

def quick_sort(arr):       if len(arr) <= 1:           return arr       pivot = arr[len(arr)//2]  # 选择中间元素为基准       left = [x for x in arr if x < pivot]       middle = [x for x in arr if x == pivot]       right = [x for x in arr if x > pivot]       return quick_sort(left) + middle + quick_sort(right)      # 示例   print(quick_sort([3,6,8,10,1,2,1]))  # 输出 [1, 1, 2, 3, 6, 8, 10]   

特点

  • 平均时间复杂度:O(n log n)

  • 适合处理大规模数据

  • 应用场景:数据排序、排行榜生成

二、二分查找(减治思想)

原理
在有序数组中,通过不断缩小搜索范围定位目标值,每次比较将范围减半。

def binary_search(arr, target):       left, right = 0, len(arr)-1       while left <= right:           mid = (left + right) // 2           if arr[mid] == target:               return mid           elif arr[mid] < target:               left = mid + 1           else:               right = mid - 1       return -1      # 示例   arr = [1,3,5,7,9]   print(binary_search(arr, 5))  # 输出 2(索引位置)   

关键点

  • 必须作用于有序数组

  • 时间复杂度:O(log n)

  • 应用场景:大型数据库查询、游戏分数匹配

三、递归算法(斐波那契数列)

原理
通过函数自调用分解问题,经典案例是斐波那契数列:F(n) = F(n-1) + F(n-2)

def fibonacci(n):       if n <= 1:           return n       return fibonacci(n-1) + fibonacci(n-2)      # 示例   print(fibonacci(10))  # 输出 55   

注意

  • 需设置递归终止条件

  • 存在重复计算问题(可用记忆化优化)

  • 应用场景:树结构遍历、分形图形生成

四、动态规划(背包问题)

原理
将复杂问题分解为重叠子问题,存储中间结果避免重复计算。以0-1背包问题为例:

def knapsack(values, weights, capacity):       n = len(values)       dp = [[0]*(capacity+1) for _ in range(n+1)]              for i in range(1, n+1):           for w in range(1, capacity+1):               if weights[i-1] <= w:                   dp[i][w] = max(dp[i-1][w], values[i-1] + dp[i-1][w-weights[i-1]])               else:                   dp[i][w] = dp[i-1][w]       return dp[n][capacity]      # 示例   values = [60, 100, 120]   weights = [10, 20, 30]   print(knapsack(values, weights, 50))  # 输出 220
  • 应用场景:资源分配、投资决策等
五、广度优先搜索(BFS)

原理
以层序遍历方式探索图或树结构,使用队列实现,保证先访问离起点最近的节点。

from collections import deque      def bfs(graph, start):       visited = set()       queue = deque([start])       visited.add(start)              while queue:           vertex = queue.popleft()           print(vertex, end=" ")           for neighbor in graph[vertex]:               if neighbor not in visited:                   visited.add(neighbor)                   queue.append(neighbor)      # 示例   graph = {'A': ['B','C'], 'B': ['D'], 'C': [], 'D': []}   bfs(graph, 'A')  # 输出 A B C D   

特点

  • 时间复杂度:O(V+E)

  • 应用场景:社交网络好友推荐、最短路径查找

总结

算法核心思想最佳场景时间效率
快速排序分治大数据排序O(n log n)
二分查找减治有序数据查询O(log n)
递归算法自相似分解树状结构处理视具体问题
动态规划最优子结构资源优化问题多项式时间
BFS层级遍历最短路径搜索O(V+E)

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
在这里插入图片描述

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

👉Python必备开发工具👈

在这里插入图片描述

👉Python学习视频合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉Python副业兼职路线&方法👈

学好 Python 不论是就业还是做副业赚钱都不错,但要学会兼职接单还是要有一个学习规划。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值