Tensorflow(4) Semantic Segmentation 图片预处理

本文介绍了在语义分割任务中,如何使用Tensorflow对VOC2012数据集进行预处理。通过解决图片读取时数值不正确和边缘分类问题,确保模型训练所需的数据质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在语义分割中我们常用的数据集是VOC2012,在实际训练的时候我们如何利用这个数据集对模型进行训练呢,下面是处理的一些细节以及相关代码。这个数据集的介绍详细请见我的另一篇博客

用tensorflow对其进行处理

tensorflow读图片的方式:

import tensorflow as tf
img_content = tf.read_file(filepath)
img = tf.image.decode_image(img_content)

# tf.image.decode_image()会根据读入的图片的channel数
# 分别等价于 tf.image.decode_png()   channel=1
#           tf.image.decode_jpeg()  channel=3
#           tf.image.decode_gif()   channel=4

1.如果直接从SegmentationClass里面读.png图片,打印其ndarray,会发现你读出来的ndarray里面最大的数值居然是220。而原本应该是255(SegmentationClass里面的图片的边缘是白色)。并且并不能读出正确的分类信息。这个时候要先用skimage来对图片做一次转换。转换代码如下:


                
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值