Pandas - 操作DataFrame

Pandas DataFrame操作指南
本文详细介绍了Pandas DataFrame的各种操作,包括两列相除的零处理、条件删除、定义行索引、列索引重定义、分组计算、数据合并、删除重复行、保存到Excel多表、创建空DataFrame、排序、元素转换为timestamp、特征分箱、缺失值填充、数据替换、类型转换、选择特定类型特征以及离散特征的标签编码等实用技巧。

1.DataFrame两列相除,分母为零处理方法

# 直接相除,分母不可为零
df['dead_rate'] = df['dead_count']/df['confirmed_count']
# 分母为零返回0
df_city['dead_rate'] =  df_city.apply(lambda x: x['dead_count'] / x['confirmed_count'] if x['confirmed_count']!=0 else 0, axis=1)

2.DataFrame条件判断删除

获得符合删除条件的行的索引,传入drop()函数的index参数中,inplace=True操作原DataFrame
多条件可以使用操作符: | 或, & 与, ~ 非,需用括号分隔

# 删除confirmed_count列的值为0的行
df_city.drop(index=df_city.loc[df_city['confirmed_count']==0].index, inplace=True)
# 删除['学号','姓名','班类']三列,注意axis=1
df_south.drop(['学号','姓名','班类'],axis = 1, inplace=True)

3.DataFrame定义行索引

重定义行索引方法一:reset_index(),其中drop=True可删掉原行索引,重定义行索引为0-n

df_city = df_city.reset_index(</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值