1.DataFrame两列相除,分母为零处理方法
# 直接相除,分母不可为零
df['dead_rate'] = df['dead_count']/df['confirmed_count']
# 分母为零返回0
df_city['dead_rate'] = df_city.apply(lambda x: x['dead_count'] / x['confirmed_count'] if x['confirmed_count']!=0 else 0, axis=1)
2.DataFrame条件判断删除
获得符合删除条件的行的索引,传入drop()函数的index参数中,inplace=True操作原DataFrame
多条件可以使用操作符: | 或, & 与, ~ 非,需用括号分隔
# 删除confirmed_count列的值为0的行
df_city.drop(index=df_city.loc[df_city['confirmed_count']==0].index, inplace=True)
# 删除['学号','姓名','班类']三列,注意axis=1
df_south.drop(['学号','姓名','班类'],axis = 1, inplace=True)
3.DataFrame定义行索引
重定义行索引方法一:reset_index(),其中drop=True可删掉原行索引,重定义行索引为0-n
df_city = df_city.reset_index(</