- 博客(895)
- 收藏
- 关注
原创 AI大模型从混沌到语境:用AI智能体和向量检索构建高价值知识图谱,收藏这一篇就够了!!
本文系统介绍了如何通过Cognee与Memgraph的集成,基于Hacker News数据,构建具备AI智能语义理解与实时检索能力的知识图谱。详细讲述了从数据抽取、语义处理、知识建模到可视化的完整技术方案,为研发类、知识管理与数据智能相关专业人士提供实战指引。
2025-07-09 15:56:45
533
原创 AI大模型中的上下文工程 vs 提示工程:你真的分清了吗?
在大型语言模型(LLM)应用的浪潮中,“提示工程”(Prompt Engineering)和“上下文工程”(Context Engineering)这两个概念频频被提及。很多人往往混淆二者,甚至认为它们是同一回事,殊不知这两者在设计理念和应用场景上有着本质区别。今天,我们就来全面剖析“上下文工程”与“提示工程”的异同,以及它们各自的重要性。
2025-07-09 11:59:55
702
原创 【AI大模型】一篇文章讲清楚为什么不要再构建多 AI 智能体架构系统?建议收藏!
在构建多 AI 智能体系统架构时,许多现有的框架并不理想,通过我们自己的实践经验和试错,提出了一些构建 AI 智能体的原则,并解释了为什么一些看似吸引人的想法在实际中可能并不好用。
2025-07-08 14:20:19
220
原创 RAG越来越不准?从Dify和ima知识库看元数据与标签如何让大模型更懂你
你是否有这样的经历:”知识库文档越来越多,知识库问答却越来越不靠谱,RAG检索到的都是一堆不相关的内容。“在这个信息爆炸的时代,我们不缺资料,缺的是找到"对的资料"的 能力。元数据和标签看似普通,却能很大提升RAG能力。
2025-07-07 15:34:24
533
原创 【AI大模型应用】AI 智能体中海量 MCP 工具优雅选择架构设计与案例落地
AI 智能体在企业落地过程中通过 MCP 标准协议获取数据,随着可用的 MCP 工具越来越多,逐步达到几十万个 MCP 工具,甚至几百万个,MCP 工具通过系统提示词注册给大模型时候,将会导致以下两个问题:
2025-07-07 11:16:24
614
原创 有手就会!在Cursor中配置你的第一个MCP服务——GitHub MCP!建议收藏!!
关于MCP,我的观点暂时没什么改变,这是一个长期被低估,短期被高估的方向,你暂时不需要对MCP这个概念有太多的焦虑,如果你觉得自己不太理解MCP,不知道MCP怎么用,那还是因为现在MCP生态不够成熟,相应的工具不够好用。以及,可能你没有相应的需要而已。
2025-07-06 08:00:00
703
原创 爆火MCP的来时路:LLM开启超进化,从函数调用到通用上下文协议
LLM 是近年来自然语言处理领域的革命性成果,它们通常基于深度神经网络+Transformer 架构,通过海量语料训练形成的参数化知识表征系统,其核心能力体现在语义理解与序列生成两个层面。LLM 的核心目标就是理解和生成自然语言,例如ChatGPT是基于自回归的方式进行文本生成,在约定范式下能够实现符合人类对话范式的交互输出,但是传统的 LLM 有两个短板严重限制了模型的能力:
2025-07-05 08:00:00
1010
原创 到底是用RAG还是大模型微调?你只需要看这几点!!
保持基础大模型不变。另外建立一个高效的知识库(可以是文档、数据库、网页等),并配备一个强大的搜索引擎(检索器)。当用户提问时,先用检索器从知识库中找到最相关的信息片段,然后把问题和这些片段一起交给大模型,让它基于这些最新、最相关的上下文生成答案。
2025-07-04 12:00:57
766
原创 【AI大模型入门教程】机器学习之Transformer及预训练模型,零基础小白收藏这一篇就够了!!
Transformer是一种高效、灵活的网络,凭借自注意力机制和并行计算能力,成为现代深度学习的核心架构。自从 ELMO,GPT,BERT等模型问世,基于大规模预料的预训练模型便开始流行起来。学者们的注意力渐渐从模型架构转移到了预训练上。预训练+微调的方式也创造了不少下游任务 SOTA。
2025-07-04 11:30:40
895
原创 Agent做多模态RAG方案-MDocAgent及文档解析中的图像前处理问题
先来看多模态RAG进展,关于这块,已经在多模态RAG专题中介绍过很多了。其中提到最多的,就是ColBERT、ColPali这两类embedding模型,不过,从技术角度上讲,两者存在一定局限性。
2025-07-03 19:00:14
595
原创 从会对话到会干活,AI Agent 如何实现动作闭环?看完这一篇你就懂了!!
今天,我们要从“干活”这件事本身出发,聊聊一个更具体的问题:AI 要从“会聊天”变成“能干活”,到底还差几步?在这篇文章里,我会用我开发的 Agent 框架,先讲相关技术实现再横向对比目前主流的 AI Agent 架构,最后分享我对行动闭环的三点判断。
2025-07-03 17:48:20
687
原创 MCP出现的意义是什么?什么样的智能体才算是好智能体?看完这篇文章你就懂了!!
AI 智能体现在能做的事情真的很厉害,可以思考、规划,还能执行各种复杂任务,而且代码量并不大。这让开发者看到了一个机会:把那些庞大复杂的代码库和 API 拆解成更实用的模块。不过要让这些智能变成现实世界里真正能用的东西,还需要模块化、标准化和强大的接口支持。模型上下文协议(Model Context Protocol,简称 MCP) 就是为了解决这个问题而出现的。
2025-07-02 14:15:58
781
原创 并非一切都是大模型(LLMs),2025年你需要了解的8种AI模型!
在2023年,说起“AI”,大多数人第一反应肯定是 ChatGPT。但到了2025年,局面已经发生了翻天覆地的变化。虽然大语言模型(LLMs)点燃了这场AI革命的火花,但如今我们已经步入了一个“专用模型”当道的时代——每一种模型都有它擅长的领域和独特的“超能力”。然而,奇怪的是,人们还是习惯把它们统称为大语言模型(LLMs)。这就像我们把所有交通工具都叫做“汽车”,不管是自行车、卡车还是飞机。虽然它们都能移动,但用途和结构却截然不同。
2025-07-02 11:47:33
706
原创 AI大模型RL颠覆认知!决定模型强弱的关键,竟不是预训练?
在当前的大语言模型(LLM)领域,研究者们发现了一个令人困惑的现象:当我们想通过强化学习(RL)来教模型进行复杂的推理(比如做数学题)时,不同的“基座模型”表现出了天壤之别。具体来说,像Qwen系列的模型,似乎天生就是“强化学习的好苗子”(论文中称为“RL-friendly”),用RL方法稍加训练,推理能力就能突飞猛进。然而,另一个非常流行和强大的模型家族——Llama系列,却像个“固执的学生”,用同样的RL方法去教,效果却差强人意,甚至会出现性能倒退、输出重复无意义内容等“病态”行为。
2025-07-01 14:56:55
640
原创 探索AI未来:GraphRAG——更高效智能的跨文档查询方式
GraphRAG是一种将知识图谱与大语言模型(LLM)相结合的前沿技术,极大提升了复杂问题检索、文档互联及领域知识集成的准确性和效率。本文详细介绍了GraphRAG的原理、优于传统RAG(向量检索增强生成)的关键优势,并通过实际案例和实现流程,帮助专业人士把握最新的企业AI知识管理与应用趋势。
2025-07-01 11:56:18
520
原创 AI时代的最终赢家是它们三个,很遗憾DeepSeek已经掉队
今年年初,DeepSeek突然出圈,所有人都认为它是国产AI的希望之星,光芒万丈。可你猜怎么着?半年后的今天,笑到最后的,还真不是它!这大模型争霸赛的剧本,比想象中更出人意料。目前在大模型领域已经站稳脚跟的只有三家,很遗憾DeepSeek并不在其中之列!我把它们称之为AI届的“BAT”。
2025-06-30 21:08:59
945
原创 GraphRAG的索引动态更新解法-分桶+局部更新及“上下文工程”新概念?看完这篇你就懂了!!
我们继续看GraphRAG的问题,基于图的检索增强生成(Graph-RAG)在处理动态增长语料库时的效率问题。现在的一些方案,主要集中在静态语料库的检索增强生成,如Vanilla RAG、Graph-based RAG等。动态检索方法如DRAGIN、LightRAG和DyPRAG等虽然尝试解决动态语料库的问题,但在高频数据变化下的动态更新消耗仍然较高。这个问题的难点在于如何在不需要全图重建的情况下,高效地更新语料库,并保持高检索准确性和低延迟。
2025-06-30 20:51:48
876
原创 解构AI Agent智能体范式:单体推理、多模型智能体和RAG中心化三种核心架构
AI Agent并没有本质上提升某个模型的智力,只不过是学会了如何使用工具而已。而如何使用工具,使用说明工具以及多大程度的依靠工具,就产生了现有的实现AI Agent智能体的三种方法:单体推理模型:典型如OpenAI,这种架构的核心思想是依赖一个单一、巨大且能力全面的大语言模型来统一处理任务的各个方面,包括理解查询、规划步骤、执行工具(如搜索)以及综合信息生成最终答案。
2025-06-29 08:00:00
934
原创 多Agent系统提示词工程:从灾难到突破的 8 个关键转折 | 有趣的是,多agent性能↑90%但token也↑15倍
“多智能体系统比单智能体性能提升了 90.2%,但智能体系统的 token 消耗是普通聊天的约 15 倍,你会怎么选择?”当智能体达到一定智能阈值,多智能体系统成为性能扩展的关键路径,正如人类文明通过协作实现指数级进步。智能体系统的最后一公里即是核心征程——原型到生产的鸿沟远超预期,因微小错误会引发轨迹级偏差。
2025-06-28 11:38:39
767
原创 【AI大模型应用】用 AI 打造你的专属旅行计划:多智能体旅行规划工具(实战篇)
在如今快速变化的 AI 世界里,能把各种信息整合成个性化、实用的旅行计划,简直是无价之宝!马上开启小孩们的暑假模式,旅行变热了。不管是随性的周末小逃亡,还是精心设计的长假期,旅行者们都越来越想要一个智能系统,能实时从网上抓取数据,转化成详细的行程安排、活动推荐和旅行小贴士。
2025-06-28 10:39:44
299
原创 Qwen2.5-VL模型部署实践:从环境搭建到推理调用详解
将视觉感知与自然语言处理深度融合已成为产业与学术界的热点。Qwen系列最新推出的旗舰级视觉语言模型 Qwen2.5-VL,以其卓越的图文理解能力和对话式交互性能,成为行业标杆。本文将带你从零开始,系统梳理 Qwen2.5-VL 的环境准备、模型下载、依赖安装及推理脚本实战,并通过示例图解,帮助你快速掌握部署与应用要点。
2025-06-27 14:03:58
1001
原创 如何让AI模型“轻装上阵”?为何模型压缩至关重要?看完这一篇你就知道了!!
在人工智能飞速发展的今天,深度学习模型的规模和复杂度不断提升,带来了前所未有的性能突破。然而,这些庞大的模型也伴随着巨大的计算资源和存储需求,给实际应用带来了挑战。想象一下,我们有一个训练良好的AI模型,能够精准识别图像中的物体,甚至在医学影像中发现异常。一般的模型可能包含数百万甚至数十亿的参数,运行时需要高性能的计算设备。但在现实中,许多应用场景,如智能手机、无人机、智能摄像头等设备,计算资源有限,无法承载如此庞大的模型。此外,即使在云端部署,庞大的模型也会导致高昂的计算和存储成本。这就像一位才华横溢的音
2025-06-27 12:36:59
550
原创 【AI大模型】基于知识图谱与大语言模型的中药方剂智能生成TCM-KLLaMA
亮点构建涵盖症状、舌象和脉象等信息的中医症状知识图谱,并通过提出的 SMKI 机制增强模型生成能力。知识图谱与模糊检索相结合,使模型能够识别和处理输入中的同义表达或错误信息,从而提高推荐准确性。改进大模型的输出层和模型的训练损失函数,有效抑制药物推荐过程中生成无关或错误信息的现象。
2025-06-26 12:01:06
667
原创 【AI大模型应用】通过 Transformer 后处理 AI 天气预报改进中期灾害性天气预测
该研究对于提升中期恶劣天气预测精度和可靠性具有重要意义,通过利用 AI NWP 模型精准捕捉大气状态演变,Transformer 网络能够学习预测序列中复杂的时序关系,从而更准确地预测恶劣天气事件发生概率。具体而言,Transformer 架构通过将预测时效视为序列 “token”,能够学习输入预测序列中复杂的时序关系,有效捕捉导致恶劣天气的大气条件演变。
2025-06-26 11:35:35
972
原创 从LSP到MCP:基础架构、核心组件和协议未来,零基础小白收藏这一篇就够了!!
本文系统性地介绍了MCP(Model Context Protocol)协议的设计理念、核心架构及技术实现,旨在通过标准化AI大模型与外部系统的交互方式,解决大模型工具调用和实时信息获取的行业痛点。文章通过对比API、LSP等历史协议,深入解析了MCP协议的三大核心组件与创新传输机制,并对协议的未来发展进行展望。
2025-06-25 14:46:19
696
原创 RAG已死?一文带你讲清2025年RAG的重点新趋势!收藏这一篇就够了!!
2023年至今,检索增强生成(RAG)经历了从备受瞩目到逐渐融入智能体生态的转变。尽管有人宣称“RAG已死”,但其在企业级应用中的重要性依然无可替代。RAG正从独立框架演变为智能体生态的关键子模块,2025年将在多模态、代理融合、行业定制化等领域迎来新的突破。本文结合这几年的技术进展和未来趋势,深度探讨RAG在2025年的五大重点发展方向。
2025-06-25 11:53:39
907
原创 【AI大模型】 自然语言处理Transformer模型最详细讲解(图解版),建议人手一份!!
在本文中,我们将对Transformer模型进行讲解,并逐一介绍内部的各个组件,希望能够让刚学习Transformer的同学可以轻易理解它的运行机理。希望对你的学习有帮助。近几年NLP较为流行的两大模型分别为Transformer和Bert,其中Transformer由论文《Attention is All You Need》提出。该模型由谷歌团队开发,Transformer是不同与传统RNN和CNN两大主流结构,它的内部是采用自注意力机制模块。
2025-06-24 20:11:30
659
原创 信息过载时代,如何真正「懂」LLM?从MIT分享的50个面试题开始
人类从农耕时代到工业时代花了数千年,从工业时代到信息时代又花了两百多年,而 LLM 仅出现不到十年,就已将曾经遥不可及的人工智能能力普及给大众,让全球数亿人能够通过自然语言进行创作、编程和推理。LLM 的技术版图正以前所未有的速度扩张,从不断刷新型号的「模型竞赛」,到能够自主执行任务的智能体,技术的浪潮既令人振奋,也带来了前所未有的挑战。
2025-06-24 12:02:10
903
原创 终于有AI懂老师了!用Qwen3搭建智能作业批改系统的完整实战
开源的Qwen3发布,性能相比之前的版本有了大幅提升,特别是在中文理解和逻辑推理方面。关键是它完全开源,可以本地部署!我就琢磨着用它来搭建一个智能作业批改系统,既能减轻老师的负担,又能提高批改的准确性和效率。
2025-06-23 15:07:00
889
原创 盘点一下!大模型Agent 在各个行业领域的 “花式玩法”,涉及特别广泛~~
今年大模型Agent的风口确实很强,那么今天作者就继续再给大家认真盘一盘大模型Agent在各个领域的“花式玩法”,涉及电影、博客、医疗、金融分析、软件、数据可视化、新闻审查、具身AI、web导航等,并且基本上都有源码的。如果你正在做这方面的工作,亦或者是正在寻求Agent应用灵感,这篇文章或许对你有帮助。
2025-06-23 11:37:27
488
原创 一文搞懂什么是多模态大模型?为什么需要多模态大模型?
“ 多模态大模型,就是支持多种数据格式的模型”很多人都听说过多模态,也知道多模态大模型,但如果让你介绍一下什么是多模态大模型,它有什么优点和缺点,以及为什么需要多模态,这时可能就有点傻眼了。从应用角度来说,垂直应用的大模型才应该是未来的趋势,那么为什么还要研究多模态大模型呢?今天我们就来了解一下什么是多模态大模型,以及为什么需要多模态大模型。
2025-06-22 08:00:00
640
原创 【大模型入门教程】几张图帮你快速了解AI智能体,对零基础小白十分友好!!
本文档旨在探讨AI智能体的概念、应用及其未来发展方向。AI智能体是一种能够自主执行任务、进行决策和与环境互动的智能系统。随着人工智能技术的不断进步,AI智能体在各个领域的应用日益广泛,从自动化客服到智能家居,AI智能体正在改变我们的生活和工作方式。
2025-06-21 14:22:39
772
原创 MCP-Zero重塑工具调用范式:让Agent学会“主动要”,而不是被动等“喂”,可省下98%算力!
当AI需要“外挂”(工具),麻烦来了!想象一下,你家的超级AI助手ChatGPT不仅会聊天写诗,还能帮你订外卖、查股票、改代码!这靠的是让它调用外部工具(API),就像给它装上了“外挂”。但问题来了:现在“外挂”成千上万,怎么告诉AI哪个能用呢?传统做法简单粗暴:把所有工具的使用说明书(JSON Schema)一股脑塞进给AI的提示词里。想想看,光一个“GitHub工具包”的说明书就要4600多个token(相当于几千个中文字符),更别说几千个工具了!
2025-06-21 11:57:43
477
原创 【AI大模型实战】AI智能体-Coze搭建【发票批量识别写入Excel】工作流
Coze工作流是一系列可执行指令的集合,用于实现业务逻辑或完成特定任务。它为应用/智能体的数据流动和任务处理提供了一个结构化框架。工作流的核心在于将大模型的强大能力与特定的业务逻辑相结合,通过系统化、流程化的方法来实现高效、可扩展的 AI 应用开发。 Coze提供了一个可视化画布,你可以通过拖拽节点迅速搭建工作流。同时,支持在画布实时调试工作流。在工作流画布中,你可以清晰地看到数据的流转过程和任务的执行顺序。
2025-06-20 14:57:42
1026
原创 Anthropic实践发现:Multi-Agent系统的核心仍然是Prompt设计!
Anthropic多智能体研究系统的架构采用协调者-工作者模式:系统采用一个首席智能体(Lead Agent)和多个子智能体(Subagents)的架构。首席智能体负责协调和分配任务,子智能体并行执行具体任务。对比传统的RAG方法使用静态检索,Anthropic的架构使用多步骤搜索,动态地查找相关信息,适应新发现,并分析结果以制定高质量的答案。
2025-06-20 11:53:31
682
原创 【Deepseek】全网最全DeepSeek使用手册!学会了效率提高90%【建议收藏】
打不过就加入,英伟达官宣:DeepSeek R1现已正式上线英伟达NIM平台,成为英伟达人工智能企业软件平台的一部分。说什么不重要,重要的是行动够快。DeepSeek打破了英伟达的算力神话,引起整个AI圈的轰动。然后,今天就给大家介绍一下DeepSeek到底该如何使用,让大家更快的掌握DeekSeek使用方法。
2025-06-19 11:03:43
658
原创 DeepSeek新手必看!DeepSeek个人应用全攻略|最全的 DeepSeek 使用指南(建议收藏)
DeepSeek是免费的,使用简单,普通人无需花钱去学习。1. 访问入口网页端:直接访问 [DeepSeek官网](https://www.deepseek.com),点击“开始对话”使用智能助手(如 DeepSeek-R1)。API 开发者:注册账号后,在控制台获取 API Key,参考[文档](https://platform.deepseek.com/docs)集成到代码中。移动端:部分产品支持 App(如有),可在应用商店搜索下载,名字就是DeepSeek。
2025-06-19 10:59:37
601
原创 大模型基础知识 | 不学算法也能看懂!零基础小白建议收藏!!
脑存在两个系统,“快系统”与“慢系统”:“慢系统”是我们能够有意识觉察的思维过程,依靠逻辑推理与分析;“快系统”则是无意识地运作,以惊人的速度处理信息,能够瞬间形成直觉判断。人类具备快速且无意识的感知能力,是因为人类的大脑有 1000 亿个神经元。神经生物学家们已对斑胸草雀、果蝇的大脑进行3D重建,即使只有一立方毫米的脑组织,也可以产生超过 1000TB 的数据。模仿人脑中神经元的工作方式,计算机科学家构建了感知机。
2025-06-18 19:17:16
760
原创 【AI大模型入门教程】零基础解码Transformer与大模型核心原理
本文以通俗易懂的方式,为“大模型小白”解析Transformer的核心原理,包括其与大模型的关系、自注意力机制、多头注意力机制、位置编码、Encoder和Decoder的组成等内容,帮助读者全面理解这一支撑现代AI的语言模型基石。
2025-06-18 11:56:31
677
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人