前言
AI正改变着各行各业,从内容创作到客户服务、知识问答等AI的应用日益广泛。为了更有效的利用AI,通常需要构建智能体或其初级形式的workflow。但在目前阶段无论是智能体亦或许Workflow都无法保证其自动运行能达到100%的可靠性,根源在于大模型存在着下面的一些问题:幻觉问题、工具调用的可靠性、训练数据未覆盖等。在引入RAG知识库后也未能够完全杜绝上面所说的问题。
既然AI自动化不能够100%保证可靠性,可以从L3降级到L2,如人在某个阶段介入进去是不是就会一定程度上提高其可靠性,这也就是人机协作。通过在Workflow或智能体(Agent)某些阶段要求人为介入进行审核或调整从改变智能体执行流程或改变其内容,将在一定程度上提高其可用性。
下面将通过理论、HITL在workflow应用模式以及一个内容生成的应用中介绍HITL在AI工作流的使用示例。
HITL(人在环中)
HITL(Human-in-the-Loop)人在环中,将人类引入智能体的关键节点从而达到人机协同的闭环。引入HITL的具体原因如下:
**1、风险控制:**人作为最终的决策守门员
**2、知识补充校正:**提供领域知识弥补AI知识盲区
3、驱动模型迭代进化
在不同阶段都可引入HITL,在模型训练阶段可以引入HITL对进行数据标注、校正偏见,在执行阶段通过HITL进行输出审核,在决策阶段通过HITL进行风险控制。
HITL最终能达到的作用包括如下:
**1、抑制幻觉与错误:**通过专家介入纠正模型幻觉
**2、责任清晰化:**如医疗诊断书的签署、法律文书的生成都需要人工去做决策
**3、提升信任度:**流程的关键节点都是有专家参与监督的,而不是完全自动化的
HITL应用
在这里主要介绍在workflow中引入HITL对工作流的某些节点输出进行一定程度的干预。HITL在workFlow中的具体实现也会根据业务性质有所不同,这里只简单介绍三种比较简单的HITL应用模式。
1、在关键流程前插入人工决策节点
在关键业务流程执行前插入人工决策节点,由领域专家人员决定是否继续执行后续流程或重新开始执行,适用于高风险操作如金融交易、医疗诊断等场景。
2、对关键输出后插入人工审核节点
在workflow工作流的某个关键节点后加入人工审核环节,确保结果准确性,适用于内容生成、文档处理、法律文书生成等质量敏感场景。
3、在节点输出置信度低于某个阈值时请求人工介入
在workflow工作流中加入置信度检测节点当置信度低于设定阈值时自动请求人工介入,平衡效率与准确性,适用于客服系统、图像识别等AI不确定性较高的场景。
当然上面只是三个比较简单HITL应用模型,实际场景中应用HITL可能需要详细分析workflow流程才能确定哪个环节需要人工的介入。
基于HITL的文章生成工作流
如下的流程图画出了AI辅助文章撰写的全流程,包括主题定义、大纲生成、初稿撰写、人工审核及最终润色优化,其中初稿审核也就是我们本文所说的HITL,也就是人工介入的节点。
这里的文章撰写智能体在用户提供主题后生成大纲、接着编写文章初稿后提示审核或编辑草稿,后再进行风格优化后生成最终文章。这里只在草稿生成后提供了人工介入,只要需要也可以在大纲编写完成后就进行人工介入,对大纲不满意可以打回让模型再生成一次大纲。
也有人会认为人为介入多了这还算是人工智能?在目前阶段有些AI工作流/智能体应用如果你对质量、可靠性要求非常高就很难做到得完全的0介入。按照自动驾驶的分级来看Agent目前也只是处于L2级别的Agent,距离L3级别Agent还有相当长一段时间。当前汽车也只是辅助驾驶,也做不到完全0介入,国内无驾驶员的示范运营区后台也有着人工在出现问题时介入。
最后
为什么要学AI大模型
当下,⼈⼯智能市场迎来了爆发期,并逐渐进⼊以⼈⼯通⽤智能(AGI)为主导的新时代。企业纷纷官宣“ AI+ ”战略,为新兴技术⼈才创造丰富的就业机会,⼈才缺⼝将达 400 万!
DeepSeek问世以来,生成式AI和大模型技术爆发式增长,让很多岗位重新成了炙手可热的新星,岗位薪资远超很多后端岗位,在程序员中稳居前列。
与此同时AI与各行各业深度融合,飞速发展,成为炙手可热的新风口,企业非常需要了解AI、懂AI、会用AI的员工,纷纷开出高薪招聘AI大模型相关岗位。
最近很多程序员朋友都已经学习或者准备学习 AI 大模型,后台也经常会有小伙伴咨询学习路线和学习资料,我特别拜托北京清华大学学士和美国加州理工学院博士学位的鲁为民老师给大家这里给大家准备了一份涵盖了AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频 全系列的学习资料,这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

AI大模型系统学习路线
在面对AI大模型开发领域的复杂与深入,精准学习显得尤为重要。一份系统的技术路线图,不仅能够帮助开发者清晰地了解从入门到精通所需掌握的知识点,还能提供一条高效、有序的学习路径。
但知道是一回事,做又是另一回事,初学者最常遇到的问题主要是理论知识缺乏、资源和工具的限制、模型理解和调试的复杂性,在这基础上,找到高质量的学习资源,不浪费时间、不走弯路,又是重中之重。
AI大模型入门到实战的视频教程+项目包
看视频学习是一种高效、直观、灵活且富有吸引力的学习方式,可以更直观地展示过程,能有效提升学习兴趣和理解力,是现在获取知识的重要途径
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
海量AI大模型必读的经典书籍(PDF)
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
600+AI大模型报告(实时更新)
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
AI大模型面试真题+答案解析
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
