- 博客(2)
- 收藏
- 关注
原创 联邦学习中安全与隐私实施概述
联邦学习(FL)基于“联邦”和“分而治之”理念构建机器学习模型。在这一过程中,众多参与者各自拥有不与模型管理者共享的数据,他们期望通过整合彼此数据来联合训练模型。具体而言,每个参与者利用其私有数据在本地训练模型,并将更新发送至模型管理者。模型管理者则通过平均更新的方式来更新全局模型,并且要求全局模型的精度应与集中式训练的模型精度相近,以此实现基于分布式数据集的模型构建,同时确保数据隐私得到有效保护。综上所述,当前安全防御解决方案虽能有效应对拜占庭和模型中毒等安全攻击,但仍面临诸多挑战。
2024-11-09 22:53:37
1023
原创 JS 一道力扣题刷新了我对map的认知,特此记录!
给你一个整数 n 和二维整数数组 roads ,其中 roads[i] = [ui, vi, timei] 表示在路口 ui 和 vi 之间有一条需要花费 timei 时间才能通过的道路。你想知道花费 最少时间 从路口 0 出发到达路口 n - 1 的方案数。你在一个城市里,城市由 n 个路口组成,路口编号为 0 到 n - 1 ,某些路口之间有 双向 道路。输入保证你可以从任意路口出发到达其他任意路口,且任意两个路口之间最多有一条路。请返回花费 最少时间 到达目的地的 路径数目。具体情况参考这篇帖子。
2024-03-05 22:00:37
411
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人