数据白化
1、白化的原理
随机向量的“零均值化”和“空间解相关”(也叫白化)是最常用的两个预处理过程,其中“零均值化”比较简单,而“空间解相关”涉及一些矩阵的知识。
设有均值为零的随机信号向量 X ,其自相关矩阵为
Rx=E[xxT]≠I R_x =E[xx^T] \neq \text{I} Rx=E[xxT]=I
很明显,RxR_xRx是对称矩阵,且是非负定的(所有特征值都大于或等于0)。
现在,寻找一个线性变换B对X进行变换,即y=Bxy=Bxy=Bx,使得
Ry=B⋅E[xxT]⋅BT=I R_y = B\cdot E[xx^T]\cdot B^T = \text{I} Ry=B⋅E[xxT]⋅BT=I
上式的含义是:y的各分量是不相关的,即E[YiYi]=δijE[Y_i Y_i]=\delta_{ij}E[YiYi]=δij