SLAM:在 Ceres 中实现 PnP 和 ICP 的优化

在 Ceres Solver 中实现 PnP(Perspective-n-Point)ICP(Iterative Closest Point) 的优化,需结合非线性最小二乘问题的建模技巧、参数化方法及鲁棒性设计。以下从核心步骤、代码实现、优化策略三方面系统阐述,并辅以关键代码片段说明。


一、PnP 问题优化实现

PnP 的目标是求解相机位姿(旋转矩阵 R 和平移向量 t),使 3D 点投影到图像平面的位置与观测的 2D 点匹配。

1. 核心步骤
  • 代价函数设计
    重投影误差(Reprojection Error)是最小化目标:
    error = ∥ observed_pixel − π ( K ⋅ ( R ⋅ object_point + t ) ) ∥ 2 \text{error} = \| \text{observed\_pixel} - \pi(K \cdot (R \cdot \text{object\_point} + t)) \|_2 error=observed_pixelπ(K(Robject_point+t))2
    其中 π \pi π 是投影函数(将 3D 点转为 2D 像素坐标), K K K 为相机内参矩阵。

  • 参数化旋转
    旋转矩阵需用李代数(angle-axis)或四元数表示,避免过参数化。Ceres 提供 EigenQuaternionParameterization 或自定义局部参数化(如 ceres::LocalParameterization)。

  • 代价函数实现
    使用仿函数(Functor)定义误差计算:

    struct PnPCostFunctor {
         
         
        cv::Point3f obj_pt;
        cv::Point2f img_pt;
        cv::Mat K; // 相机内参
    
        template <typename T>
        bool operator()(const T* const rotation, const T* const translation, T* residual) const {
         
         
            T point[3] = {
         
          T(obj_pt.x), T(obj_pt.y), T(obj_pt.z) };
            T rotated_point[3];
            ceres::AngleAxisRotatePoint(rotation, point, rotated_point); // 旋转
            rotated_point[0] += translation[0];
            rotated_point
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xMathematics

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值