哈夫曼树(赫夫曼树/霍夫曼树)是最优二叉树,树的带权路径最短,即WPL(weighted path leanght),说哈夫曼树之前先说几个概念:
1.路径:一个节点到达孩子节点和孙子节点的路径
举例:三层L的树(算上根节点),从根节点到L层节点的路径为L-1=2
2.路径长度:
权:节点的值
节点的带权路径:根节点到该节点的路径*值
举例:
三层树,叶子结点的值为10,那么这个节点的带权路径为10*2(路径)=20
树的带权路径长度:所有的叶子结点的值和 带权路径长度 之和WPL(weighted path leanght)
权值越大的节点距离树根越近的二叉树才是最优二叉树即哈夫曼树。
来个图:
代码实现:
package tree;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class HufgfmanTree {
public static void main(String[] args) {
int[] arr = {13, 7, 8, 3, 29, 6, 1};
Node huffmanTree = createHuffmanTree(arr);
preOrder(huffmanTree);
}
//遍历树的方法
public static void preOrder(Node node){
if(node!=null) node.preOrder();
else System.out.println("空树");
}
//创建赫夫曼树方法
public static Node createHuffmanTree(int[] arr) {
Node n = null;
//把元素构建成node放入集合
List<Node> list = new ArrayList<>();
for (int i = 0; i < arr.length; i++) list.add(new Node(arr[i]));
//循环处理
while (list.size() > 1) {
Collections.sort(list);
//取出根节点最小的两棵二叉树
Node left = list.get(0);
Node right = list.get(1);
//构建新的二叉树
Node parent = new Node(left.val + right.val);
//节点赋值
parent.left = left;
parent.right = right;
//从集合里删除创建过的元素
list.remove(left);
list.remove(right);
//将新的二叉树++集合
list.add(parent);
}
return list.get(0);
}
}
class Node implements Comparable<Node> {
int val;
Node left;
Node right;
public Node(int val) {
this.val = val;
}
@Override
public String toString() {
return "Node{" +
"val=" + val +
'}';
}
public void preOrder(){
System.out.println(this);
if(this.left!=null)this.left.preOrder();
if(this.right!=null)this.right.preOrder();
}
@Override
public int compareTo(Node node) {
//升序
return this.val - node.val;
}
}
打印结果(前序遍历):