SSCL-AMC: A Self-supervised Automatic Modulation Classification Method via Dynamic Augmentation and Ensemble Learning
摘要:与传统的手工自动调制分类 (AMC) 方法相比,深度学习已经显示出有希望的结果,AMC 作为信号检测和调制之间的中间步骤发挥着关键作用。然而,获取大规模标记数据仍然具有挑战性,因为数据质量和注释成本都是实现准确和高效训练的关键因素。在本文中,我们提出了一种新的自我监督对比学习 (SSCL) 和基于梯度对抗的数据增强 (GADA) 方法用于 AMC。此外,还采用了基于 Transformer-LSTM 架构的细致编码器,以使用未标记的基类预训练特征提取器。随后,采用知识迁移来微调特征提取器,并引入集成学习以有效地利用多个分类器进行联合决策。实验表明,我们在具有挑战性的大规模 RadioML2018.10a 数据集上实现了高达 91.87% 的准确率,展示了与最先进的监督实现相比具有竞争力的性能。
这篇文章介绍了一种名为SSCL-AMC的新型自监督自动调制分类方法,它通过动态增强和集成学习来提高调制信号分类的准确性。文章的核心贡献在于提出了一种结合梯度对抗数据增强(GADA)和Transformer-LSTM编码器的自监督对比学习框架,并通过集成学习方法进一步提升模型性能。该方法在大规模的RadioML2018.10a数据集上达到了91.87%的准确率,接近全监督学习的结果。
背景知识
自动调制分类(AMC)是无线通信中的一个重要任务,它能够在不知道传输信号的情况下识别信号的调制类型。传统AMC方法依赖于手工设计