- 博客(30)
- 收藏
- 关注
原创 自动驾驶中的传感器技术30——Lidar(5)
激光雷达主流扫描模式原理概述 目前激光雷达主要采用6种扫描模式:1)机械旋转式,通过多激光器垂直堆叠和整体旋转实现360°扫描,但可靠性差;2)棱镜式(如大疆Livox),采用双楔形棱镜折射实现玫瑰花结扫描;3)转镜式(如禾赛AT128),利用多面体转镜反射实现等速扫描;4)MEMS振镜式(如速腾),通过微机电镜片谐振偏转扫描;5)混合式(如图达通猎鹰),结合转镜水平扫描和振镜垂直扫描;6)Flash式,采用面阵激光瞬时照明,无需扫描机构。固态化是行业发展趋势,各方案在可靠性、成本、性能等方面各有优劣,需根
2025-08-11 07:00:00
400
原创 自动驾驶中的传感器技术29——Lidar(4)
激光雷达光学系统核心部件及应用分析 摘要:本文系统介绍了激光雷达光学系统中的关键部件及其特性。分轴和同轴光路设计各有优劣,分轴存在近场盲区但成本低,同轴无盲区但结构复杂。重点分析了准直镜(FAC/SAC)、分束器、扩散片、滤光片等核心光学元件的工作原理和技术指标。其中,FAC/SAC可有效改善激光器光束质量;窄带干涉滤光片需满足超窄带宽(<1.5nm)和高透过率(>90%)要求;扩散片能实现光场均匀化(均匀度达90%)。此外,还比较了平面镜、转镜和MEMS振镜三种扫描方案的性能特点,指出电磁式M
2025-08-10 07:00:00
452
原创 自动驾驶中的传感器技术28——Lidar(3)
本文综述了激光雷达探测器的关键技术与发展现状。首先介绍了PIN光电二极管、雪崩光电二极管(APD)和单光子雪崩二极管(SPAD)三类主流探测器的工作原理及特性对比,重点分析了SPAD在盖革模式下的单光子探测机制及其关键参数(光子探测效率、雪崩倍增因子等)。随后阐述了硅光电倍增管(SiPM)作为SPAD阵列的独特优势,并系统比较了SPAD阵列与SiPM阵列在时间分辨率、灵敏度和像素数量等维度的性能差异。最后指出具备单光子灵敏度、皮秒级时间分辨率的SPAD/SiPM阵列是脉冲激光雷达的理想选择,并汇总了当前行业
2025-08-09 07:00:00
859
原创 自动驾驶中的传感器技术27——Lidar(2)
激光雷达波长选择主要集中于近红外波段(905nm、1550nm等),以兼顾人眼安全与探测效率。其中905nm波段采用硅基探测器,1550nm则需InGaAs材料,后者具有更高功率但成本较高。激光器类型上,半导体激光器(EEL/VCSEL)和光纤激光器形成技术路线分野:EEL可实现高功率但光束质量差,VCSEL凭借圆形光斑、低功耗和可阵列化优势成为主流选择,而1550nm光纤激光器虽性能优异却面临体积和成本挑战。行业现状显示,905nm方案凭借成熟供应链占据市场主导,1550nm方案则在高阶自动驾驶领域逐步渗
2025-08-08 07:00:00
1085
原创 自动驾驶中的传感器技术26——Lidar(1)
激光雷达技术正从机械式向固态化演进,当前主流方案为转镜式(禾赛AT系列)和MEMS振镜式(速腾)。禾赛采用VCSEL+SPAD+转镜方案,速腾使用EEL+SiPM+MEMS方案,均保持技术连续性。全固态方案中,大陆HFL110已量产,Flash方案受限于VCSEL和SPAD性能,更适合中距探测。FMCW+OPA方案因硅光芯片适配性更具潜力,Avea模块实现了250m测距能力。技术发展聚焦芯片集成(发射端的VCSEL/EEL、接收端的SPAD/SiPM)和光学系统优化,量产可靠性与性能提升是关键挑战。
2025-08-07 07:00:00
954
原创 自动驾驶中的传感器技术25——Lidar(0)
全球激光雷达产业现状显示,Valeo作为老牌Tier1厂商处于第一梯队,其产品可作行业标杆。Aeva的4D激光雷达虽表现优异但量产经验不足。国内市场由禾赛和速腾主导,占据大部分份额。2023年出货量排名显示Valeo仍保持领先优势,国内速腾、禾赛、华为和图达通构成稳健的第一梯队,大疆和一径在技术上也有参考价值。车载激光雷达主要采用3D测距技术中的(c)方案,未来将向(e)方案发展。
2025-08-06 06:52:13
541
原创 自动驾驶中的传感器技术24——Camera(15)
本文系统梳理了自动驾驶车辆各类摄像头的技术需求:前视窄角(8MP+、35°FOV、250m探测)用于测距识别;前视广角(120°FOV)侧重红绿灯识别;后视(60°FOV)支持泊车辅助;侧视(3-8MP、120°FOV)实现BSD功能;环视(200°鱼眼)用于360°成像;DMS/OMS(2.5-3MP全局快门)监控驾乘人员;CMS/IMS(3MP)替代传统后视镜。各类摄像头在像素、视场角、探测距离、安装位置等方面均有特定要求,共同构建完整的自动驾驶视觉感知系统。
2025-08-05 16:20:04
964
原创 自动驾驶中的传感器技术23——Camera(14)
车载摄像头的图像信号处理器(ISP)是核心组件,负责将传感器原始数据转换为高质量图像。其核心功能包括拜耳转换、去噪、自动曝光/白平衡/对焦(3A算法)、低光增强、HDR处理等,以优化图像质量。ISP通过复杂的算法链(如坏点校正、黑电平补偿、镜头阴影校正等)处理RAW数据,最终输出标准格式图像供显示或自动驾驶系统使用。不同光照条件下的参数调优是保证成像质量的关键,但需耗费大量时间。随着自动驾驶发展,ISP在环境感知中的重要性日益凸显。
2025-08-05 06:53:51
1312
原创 自动驾驶中的传感器技术22——Camera(13)
车载摄像头可靠性验证是确保自动驾驶和ADAS系统安全的关键环节。验证包括硬件测试(结构、防水、耐温等)、软件测试(录像、夜视、动态捕捉)、环境耐候性测试(高低温、盐雾、振动等)、电磁兼容性测试及功能测试(碰撞检测、停车监控等)。可靠性保障方法涵盖:采用高质量材料与IP68防水设计,优化图像处理算法,进行严格的环境适应性测试,规范安装维护流程,以及满足ISO26262功能安全和网络安全标准。通过多维度验证和保障措施,确保车载摄像头在复杂环境下稳定运行。
2025-08-04 17:01:07
672
原创 自动驾驶中的传感器技术21——Camera(12)
本文系统介绍了自动驾驶摄像头的图像评测方法,重点分析了分辨率、解像力等关键性能指标的测试方案。文章指出,自动驾驶对图像质量评估提出了特殊要求,需要引入OD50、DQI等新型评价标准。详细阐述了静态测试(视场角、畸变率等)和动态测试(帧率、光照适应性等)的具体实施方法,并提供了分辨率测试的标准化流程与影响因素分析。最后探讨了当前图像质量评估面临的挑战,包括传统指标适用性不足等问题,提出未来应开发专用评估指标、应用深度学习技术等发展方向。文中还列举了11种常用的摄像头性能测试方案及相应的测试环境要求。
2025-08-04 06:56:25
1048
原创 自动驾驶中的传感器技术20——Camera(11)
自动驾驶摄像头标定技术解析 摘要:自动驾驶摄像头的精准标定是保障系统安全运行的关键。标定分为内参标定和外参标定两大模块:内参标定确定焦距、主点坐标等5个相机固有参数,解决镜头畸变问题;外参标定则确定相机在车辆坐标系中的6D位姿(旋转和平移)。标定过程采用棋盘格靶标,通过多角度拍摄、特征提取、参数估算和优化等步骤实现。精确的标定直接影响车道保持、自适应巡航等核心功能的可靠性,不当标定可能导致误判引发安全隐患。专业标定需使用专用工具,遵循评估-调整-验证的标准流程,并需定期维护校准。
2025-08-03 15:49:11
752
原创 自动驾驶中的传感器技术19——Camera(10)
本文分析了自动驾驶摄像头图传的数据率计算方法,重点讨论了行消隐(Horizontal Blanking)和场消隐(Vertical Blanking)的概念。研究指出Bit per pixel(BPP)未采用标准24位的原因在于CIS(CMOS图像传感器)采用了PWL压缩技术输出图像。文中通过X8D10产品特点的图示和PWL压缩示意图,解释了这种压缩技术对数据传输效率的优化作用,为自动驾驶视觉系统的数据传输提供了技术参考。
2025-08-03 15:25:18
377
原创 自动驾驶中的传感器技术18——Camera(9)
本文系统介绍了自驾摄像头的三种主流图像格式:RGB、YUV和RAW。RGB采用三原色通道,适合高精度颜色还原;YUV通过分离亮度与色度实现高效压缩,适用于视频传输;RAW保留原始传感器数据,提供最大后期处理空间。文章详细解析了各格式的存储结构、采样方式(如YUV的4:2:0/4:2:2)及典型应用场景,对比了在低光环境下RAW相较RGB的性能优势(YOLOv8n检测精度提升0.8%)。同时提供了RGB与YUV的数学转换公式及实现注意事项,强调了色彩范围、采样格式对转换效果的影响。三种格式各具特点:RAW适合
2025-08-03 14:58:40
891
原创 自动驾驶中的传感器技术17——Camera(8)
本文分析了全球主要CIS(CMOS图像传感器)厂商的技术特点及市场表现。索尼凭借堆叠式结构和双转换增益技术领跑高端市场;三星通过CornerPixel架构实现高动态范围成像;豪威科技采用Fabless模式专注设计创新;安森美在车规级CIS领域优势显著;意法半导体则聚焦舱内监控传感器。文章还探讨了各厂商在像素设计、动态范围提升等关键技术上的突破,如索尼的"Fuji"传感器实现130dB动态范围,安森美的超曝光技术达到150dB。随着自动驾驶发展,CIS正向更高分辨率(达1500万像素)、更
2025-08-03 07:57:39
947
原创 自动驾驶中的传感器技术16——Camera(7)
计算机视觉算法对摄像头性能有明确需求:37°FOV下,8MP摄像头行人识别距离达118m,而100°FOV时降至34m。像素密度直接影响识别能力,65PPM可探测行人,330PPM才能实现面部认证。同时,帧率与安全性能密切相关,高帧率可缩短刹车距离。研究表明,摄像头分辨率、视场角和帧率的合理配置对行人识别效果具有决定性影响,需根据具体应用场景平衡各项参数。
2025-08-03 07:30:17
563
原创 自动驾驶中的传感器技术15——Camera(6)
CMOS图像传感器(CIS)是相机系统的核心组件,其结构和工艺直接影响相机性能。CIS由像素阵列、驱动电路、信号处理器等组成,采用CMOS工艺制造,支持集成化设计。工艺演进从传统前照式(FSI)发展到背照式(BSI)和堆栈式,显著提升了感光效率。CIS的全局快门和滚动快门各有特点,自动驾驶多选用成本更低的滚动快门。像素架构中的4T设计能降低电路噪声,而色彩滤波阵列(CFA)的不同排列方式(如Bayer、RGBW)会影响图像的信噪比和色彩准确性。CIS的工艺和设计会直接影响相机的以下关键参数:噪点水平、动态范
2025-08-02 19:34:17
906
1
原创 自动驾驶中的传感器技术14——Camera(5)
摘要:自动驾驶摄像头系统架构设计需综合考虑算法像素需求、CIS选型(3MP-12MP)、图传速率及FOV范围等因素。主流采用模块化设计,将FR4电路板与镜头分离开发,前者处理信号传输(支持GMSL/FPD-Link等接口),后者采用标准化外采镜头,可灵活组合并降低量产风险。系统支持双路输出方案,行车用RawData直传,泊车可同时输出至CV处理器和座舱屏幕。关键工艺包括采用8008/5900密封胶实现IP67防护,确保耐候性和抗老化性能。设计需同步完成CIS参数调优、标定算法及功能安全监测配置。(149字)
2025-08-02 19:04:57
1122
原创 自动驾驶中的传感器技术13——Camera(4)
摘要:本文探讨了自动驾驶摄像头开发的技术方案与成本优化路径。主流方案趋向于统一CIS传感器配置,搭配不同镜头实现多功能应用(如行车8MP+泊车5MP),可降低物料管理成本并简化感知算法适配。关键挑战在于确定最优像素值及协调域控接口。成本方面,建议统一Serdes需求并结合APHY芯片实现供应链降本。未来架构需平衡集成度、技术领先性与成本效益,Tesla和Mobileye的系统化方案表明,传感器接口标准化有助于端到端算法迭代,但需突破传统Tier1开发模式的局限性。(150字) 注:摘要精炼了原文三个核心议题
2025-08-02 11:29:05
752
原创 自动驾驶中的传感器技术12——Camera(3)
本文探讨了自动驾驶摄像头系统的关键技术问题。前视摄像头正从三目向双目演进,单目方案需解决高像素CIS和非均匀镜头的设计难题;后视摄像头需满足R79法规对FOV和Range的特殊要求;侧视与环视摄像头因技术要求差异目前难以融合。文章还分析了DMS摄像头技术规划、图像传感器演进路径、18MP高像素传感器的应用前景,以及串行解串芯片的发展趋势。最后列出了各类摄像头的典型技术参数,包括不同视场角下的探测距离范围,指出硬件规格与后端算法的协同优化是实现性能平衡的关键。
2025-08-01 21:35:56
965
原创 自动驾驶中的传感器技术11——Camera(2)
摘要:自动驾驶摄像头(Camera)关键技术发展聚焦高分辨率(800万像素)、高动态范围(120-140dB)和LED闪烁抑制(LFM)等方向,以满足复杂环境下的图像采集需求。未来趋势包括全局快门技术、AI融合及夜视能力提升,同时需解决运动伪影与HDR的平衡问题。模组层面强调自清洁、防雾功能及成本优化。(149字)
2025-08-01 21:24:52
875
原创 自动驾驶中的传感器技术10——Camera(1)
摘要:自动驾驶摄像头行业配置呈现多元化趋势,主流厂商方案显示:前视摄像头普遍采用8MP(特斯拉统一5MP),后视多为8MP或2MP,侧视以8MP/5MP/3MP/2MP不等,环视多为5MP或3MP。特斯拉坚持全系统摄像头统一化设计,从HW3.0的1.2MP统一到HW4.0疑似全系5MP方案,通过镜头组调节实现功能差异,显著降低硬件成本。Mobileye则采用8MP行车摄像头+3MP环视的统一方案。两大领跑者均采用摄像头规格最小化策略,但特斯拉偏重系统协同(5MP),Mobileye追求性能优势(8MP)。当
2025-08-01 21:05:41
1067
原创 自动驾驶中的传感器技术9——Camera(0)
车载摄像头产业链主要由光学镜头组、CMOS传感器、ISP处理器和串行器等核心部件构成,其中图像传感器占成本50%。全球市场中,索尼、三星等传统CIS厂商仍占主导,但豪威科技、思特威等国内企业正加速崛起。镜头领域,舜宇光学以32%市占率全球领先,联创电子、欧菲光等国内厂商快速成长。串行器市场由Maxim、TI主导,华为HSMT等国产方案也在推进。技术方面,车载摄像头需应对复杂环境,玻塑混合镜头因兼具热稳定性和成本优势成为主流趋势,部分厂商已通过特殊材料实现全塑方案。整体来看,国内企业在车载摄像头产业链各环节的
2025-07-31 16:16:15
729
原创 自动驾驶中的传感器技术8——概述(8)—Sensor Fusion
传感器融合技术通过整合多源传感器数据,提升自动驾驶系统的环境感知能力,弥补单一传感器在精度、鲁棒性等方面的不足。其核心方法包括数据级、特征级和决策级融合,关键技术涉及传感器校准、运动补偿和卡尔曼滤波等。未来将向自适应融合、端到端学习等方向发展,以增强系统在复杂环境下的可靠性和智能化水平。该技术是实现高级自动驾驶的重要基础,能显著提高环境感知的准确性和决策实时性。
2025-07-31 16:02:09
915
原创 自动驾驶中的传感器技术7——概述(7)-IMU
摘要:IMU(惯性测量单元)是自动驾驶系统的核心传感器,由加速度计和陀螺仪组成,通过测量车辆加速度和角速度实现自主定位。其技术优势在于实时性强、不受信号遮挡影响,可与GPS、激光雷达等传感器融合提升定位精度。当前MEMS技术使IMU具备体积小、功耗低等特性,但存在误差累积问题。工程实践中采用松/紧耦合算法实现多传感器数据融合。未来发展趋势是IMU与域控制器集成,需解决时间同步、温度补偿等技术挑战。(149字)
2025-07-30 09:18:30
1028
原创 自动驾驶中的传感器技术6——概述(6)-GNSS
GNSS技术在自动驾驶中的关键作用摘要:全球导航卫星系统(GNSS)为自动驾驶提供厘米级高精度定位,结合RTK、双频接收等技术克服城市环境干扰。通过与IMU、LiDAR等多传感器融合,GNSS实现车辆精准定位与环境感知,支撑路径规划与决策控制。技术迭代方向包括多星座融合、5G辅助定位及AI预测算法,持续提升复杂场景下的定位可靠性。当前主流方案如RTK定位精度达±4cm,PPP技术则通过双频校正实现厘米级定位,为自动驾驶安全运行提供核心位置基准。
2025-07-29 16:07:16
810
原创 自动驾驶中的传感器技术5——概述(5)-USS
超声波雷达(USS)是自动驾驶中关键的短距离感知传感器,主要用于泊车辅助和短距探测。它通过压电晶体发射/接收超声波(40-58kHz)测量物体距离,分为长距APA(0.3-5m)和短距UPA(0.1-2.5m)两种类型。技术特点包括温度补偿、分时测量和抗干扰设计。新一代AK2雷达采用DSI3通信(444kbps),支持多模式发波和ASIL-B功能安全,探测距离超过5m且盲区小于10cm。未来发展方向包括测高能力、中高速场景应用及与毫米波雷达的融合。当前USS仍主要应用于低速场景(<25kph),但其点
2025-07-28 19:31:06
657
原创 自动驾驶中的传感器技术4——概述(4)-Radar
自动驾驶雷达技术通过无线电波探测物体距离、速度和角度,为车辆提供环境感知。主要分为长距主雷达(LRR/MRR)和短距角雷达(SRR/USRR),布置在车身前后。雷达具有远距离感知、速度测量、动静分离等优势,尤其在恶劣天气下表现优异。当前技术面临误检、漏检、点云稀疏等问题,发展方向包括4D雷达(8T8R至48T48R)和分布式卫星雷达架构,以提升分辨率和数据处理能力。
2025-07-27 11:34:35
1044
原创 自动驾驶中的传感器技术3——概述(3)-Lidar
摘要: Lidar技术是自动驾驶的核心传感器,通过激光测距生成高精度3D点云,实现环境感知、障碍物检测及定位。其分为机械式、固态等类型,部署位置包括车顶(360°覆盖)、前保(主探测)和车身侧面(补盲)。技术原理基于飞行时间(ToF)测距,具有高精度、三维感知及恶劣天气适应性等优势,但面临高反干扰、阳光噪声、盲区吸点等工程挑战。当前技术迭代方向聚焦固态化(如转镜/振镜式)、低成本化(速腾MX单模组方案)及FMCW+OPA等新型扫描技术,以提升可靠性并降低成本。未来Lidar将与其他传感器融合,推动自动驾驶系
2025-07-27 09:58:47
961
原创 自动驾驶中的传感器技术2——概述(2)-Camera
摘要 自动驾驶摄像头技术通过光学镜头和图像传感器实现环境感知,主要包括前视、环视、侧视等13个摄像头类型,部分系统采用双目摄像头提升深度感知。摄像头核心组件包括光学透镜、图像传感器(CIS)和图像处理器(ISP),后者通过算法优化画质(如降噪、HDR)。技术特点上,单目、立体、鱼眼和红外摄像头分别适用于不同场景,车载摄像头需满足耐高温、抗震等严苛要求。CIS采用RGGB、RCCB等滤光阵列以平衡灵敏度与色彩还原,并需支持LFM防闪烁。摄像头在自动驾驶中承担视觉感知、目标识别、车道保持等关键功能,未来将向更高
2025-07-26 16:01:50
1168
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人