SLAM中的三角测量

三角测量在SLAM中用于估计特征点的空间位置,通过两帧图像中同一特征点的观察,结合对极几何求解深度。本文介绍了三角测量的概念、过程,包括代码实现,并讨论了不确定性因素及提高精度的策略。尽管增大平移能提高精度,但可能导致特征匹配困难,形成了三角化的矛盾。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【来源】视觉SLAM十四讲,作者 高翔

三角测量是SLAM中,利用相机运动估计特征点空间位置的过程。

本节旨在解决以下问题:

  1. 三角测量的概念
  2. 三角测量的过程及代码实现;
  3. 三角测量有哪些不确定性
  4. 如何提高三角测量的精度

1. 概念

在SLAM中,利用对极几何约束估计相机运动之后,我们还需要通过三角测量来估计地图点的深度。三角测量(三角化)指的是,通过在两处观测同一个点的夹角,从而确定该点的距离。

SLAM中主要用三角化来估计像素点的距离。

image-20200324165223362

2. 过程

按照对极几何的定义,设$x_1,x_2$为两个特征点的归一化坐标,那么他们满足:
$$
s_1x_1=s_2Rx_2+t.
$$
经过对极几何之后,已得到了运动$R,t$,需要求解两个特征点的深度$s_1$,$s_2$。

两个深度可以分开算。若先算$s_2$,那么对上市两个做成一个$x_1$^,得:

image-20200324170444757

该式子左侧为0,右侧可看成是$s_2$的一个方程,可以根据它直接求$s_2$。有了$s_2$,$s_1$也非常容易求出。预测就可以得到两帧下的深度,即确定了空间坐标。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值