SLAM初始化

SLAM初始化涉及单目、双目及RGB-D相机,其目的是构建三维点云地图和初始位姿。常见方法包括追踪物体、单应矩阵计算、特征点匹配等。单目初始化通过匹配初始帧、位姿计算(八点法)、三角测量、地图创建和BA优化来实现。双目和RGB-D初始化则利用深度信息直接估计相机运动。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节的学习要点:

  1. 初始化的目的(单目/双目)
  2. 初始化的两种方法
  3. 初始化过程

初始化的目的

​ 单目SLAM初始化的目的是 ==构建初始的三维点云地图(空间点)并为之后的计算提供初始值==。

​ 由于仅从单帧的图像不能得到深度信息,因此需要从图像序列中选取两帧以上的图像以估计相机机姿态并重建出初始的三维点云。

常见的方法

方法一

​ 追踪一个已知物体。单帧图像的每一个点都对应于空间的一条射线。通过不同角度不同位置扫描同一个物体,期望能够将三维点的不确定性缩小到可接受的范围。

方法二

​ 基于假设空间存在一个平面物体,选取两帧不同位置的图像,通过计算单应矩阵来估计位姿。这类方法在视差较小或者平面上的点靠近某个主点时效果不好。

方法三

​ 根据两帧之间的特征点匹配计算基础矩阵,进一步估计位姿。这种方法要求存在不共面的特征点。

单目初始化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值