【Matlab】基于Lasso回归的数据回归预测(Excel可直接替换数据)

本文详细介绍了如何使用Matlab进行Lasso回归分析,包括模型原理、nlinfit函数的应用、数据说明、拟合曲线展示以及回归模型的输出,其中回归方程为Y = 1 / (0.641823 + 1.222355 e^-t)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【Matlab】基于Lasso回归的数据回归预测(Excel可直接替换数据)

1.模型原理

Lasso回归原理概述如下:
Logistic回归是一种用于二分类问题的线性分类器,它通过一个非线性函数(Logistic函数或Sigmoid函数)将线性回归的结果映射到0-1之间的概率值,然后根据概率值和一个阈值(通常为0.5)来判断样本属于哪个类别12。Logistic回归的目标是找到一组最优的参数,使得模型能够最大化地拟合数据3

2.模型说明

%% 函数说明
% 函数nlinfit语法:
% [beta,r,j] = nlinfit(x,y,@function,b0)
% x表示自变量
% y表示因变量
% function表示回归函数的函数名
% b0表示回归函数中参数的初值
% beta表示回归参数的最优值
% r表示残差
% j表示雅克比矩阵

3.数据说明

第1列为X值,第2列为Y值<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

敲代码两年半的练习生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值