1.模型原理
Lasso回归原理概述如下:
Logistic回归是一种用于二分类问题的线性分类器,它通过一个非线性函数(Logistic函数或Sigmoid函数)将线性回归的结果映射到0-1之间的概率值,然后根据概率值和一个阈值(通常为0.5)来判断样本属于哪个类别12。Logistic回归的目标是找到一组最优的参数,使得模型能够最大化地拟合数据3。
2.模型说明
%% 函数说明
% 函数nlinfit语法:
% [beta,r,j] = nlinfit(x,y,@function,b0)
% x表示自变量
% y表示因变量
% function表示回归函数的函数名
% b0表示回归函数中参数的初值
% beta表示回归参数的最优值
% r表示残差
% j表示雅克比矩阵
3.数据说明
第1列为X值,第2列为Y值<