自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

专注生信领域

多组学数据分析、数理统计、机器学习、SCI科研绘图

  • 博客(736)
  • 收藏
  • 关注

原创 数据分析:转录组差异分析方法总结(DESeq2+limma+edgeR+t-test/wilcox-test)

本文详细探讨了转录组数据分析中常用的差异分析R包(如DESeq2、limma和edgeR)及其与t-test/wilcox-rank-sum test的结合使用。文章首先介绍了如何下载和导入测试数据,并批量安装所需的R包。接着,讨论了基因表达count矩阵的标准化方法(如FPKM、TPM等),以及如何通过PCA、tSNE、UMAP和热图等方法进行基因整体水平分布的可视化。随后,文章分别展示了DESeq2、limma和edgeR的差异分析实现及结果解析,并探讨了结合t-test或wilcox-rank-sum

2023-07-17 11:01:18 23406 2

原创 【数据分析】HRS 数据的基线特征分析与可视化

本教程提供了一种基于 R 语言的分析方法,用于生成 HRS 数据的基线特征表,并评估不同组别之间的统计显著性差异。通过定义变量、计算统计量、计算 p 值和生成可视化图表,研究人员可以清晰地展示研究对象的基线特征,并评估不同组别之间的差异。这种方法不仅适用于 HRS 数据,还可以扩展到其他类似的研究项目,帮助研究人员更好地理解研究对象的基线特征,为后续的深入分析提供基础。

2025-07-09 00:30:00 5

原创 【数据分析】基于 HRS 数据的多变量相关性分析与可视化

本教程提供了一种基于 R 语言的分析方法,用于评估 HRS 数据中多个生物标志物和健康指标之间的相关性,并通过可视化图表展示这些关系。通过相关性矩阵的计算和可视化,研究人员可以直观地了解变量之间的相关性,为后续的深入分析提供依据。这种方法不仅适用于 HRS 数据,还可以扩展到其他类似的研究项目,帮助研究人员更好地理解不同健康指标之间的相互关系,为疾病机制的研究和临床决策提供数据支持。

2025-07-09 00:00:00 20

原创 【数据分析】基于 HRS 数据的虚弱指数与心血管疾病风险的非线性关系分析

本教程提供了一种基于 R 语言的分析方法,用于评估 FI 与 CVD 发生风险之间的非线性关系。通过数据分布对象的生成、Cox 比例风险模型的拟合、统计显著性检验和预测可视化,研究人员可以全面评估 FI 在 CVD 发生中的作用,并展示其统计显著性。最终生成的可视化图表不仅展示了 FI 与 CVD 发生风险之间的非线性关系,还标注了总体 p 值和非线性 p 值,为研究结果提供了直观的可视化展示。

2025-07-08 00:30:00 102

原创 【数据分析】R语言基于虚弱指数的心血管疾病风险评估

本教程提供了一种基于 R 语言的生存分析方法,用于评估虚弱指数对心血管疾病发生风险的影响。通过生存对象的创建、Kaplan-Meier 曲线的拟合、Cox 比例风险模型的拟合和 Log-rank 检验,研究人员可以全面评估 FI 对 CVD 发生风险的影响。最终生成的 Kaplan-Meier 曲线图表不仅展示了不同 FI 组别的生存概率随时间的变化,还标注了 HR 及其置信区间和 Log-rank p 值,为研究结果提供了直观的可视化展示。

2025-07-08 00:00:00 40

原创 【数据分析】HRS 研究中心血管疾病与虚弱指数的长期趋势分析

本教程提供了一种系统的方法,用于分析和可视化 HRS 数据中 CVD 与虚弱指数的长期趋势。通过 R 语言的强大功能,可以高效地处理和分析数据,生成直观的可视化图表。这种方法不仅适用于 HRS 数据,还可以扩展到其他类似的研究项目,帮助研究人员更好地理解心血管疾病与虚弱指数之间的关系,为临床决策和公共卫生政策制定提供数据支持。通过显著性测试和可视化展示,研究人员可以清晰地识别不同时间点 CVD 患者与非 CVD 患者之间的虚弱指数差异,从而为疾病管理和干预提供依据。

2025-07-07 00:15:00 128

原创 【数据分析】R语言多源数据的基线特征汇总

本教程提供了一种高效的方法,用于汇总和比较多个研究项目的基线数据。通过 R 语言的强大功能,可以快速处理和分析大量的数据,生成清晰的汇总表格。这种方法不仅适用于社会科学和医学研究,还可以扩展到其他领域,帮助研究人员更好地理解和比较不同数据集的特征。

2025-07-07 00:00:00 66

原创 【工具】AI-HOPE:提升精准医学研究中临床数据和基因组数据的整合水平

【工具】AI-HOPE:提升精准医学研究中临床数据和基因组数据的整合水平

2025-07-05 00:15:00 873

原创 【工具】DGCSG针对单细胞 RNA 测序数据的可微分图聚类与结构分组方法

DGCSG针对单细胞 RNA 测序数据的可微分图聚类与结构分组方法

2025-07-05 00:00:00 1220

原创 【科研绘图系列】基于R语言的种质资源评分与气候聚类可视化教程

本教程通过R语言及其相关数据可视化包,详细介绍了如何对种质资源的评分数据进行聚类分析和可视化。教程从数据准备开始,逐步引导读者完成聚类分析、地理分布图绘制以及条形图绘制。通过详细的代码示例和解释,读者可以学习到如何准备数据、执行聚类分析、绘制地理分布图、绘制条形图以及组合多个图形。本教程不仅提供了实用的代码示例,还展示了如何通过数据可视化技术揭示种质资源评分在不同聚类和品种下的分布情况。对于需要进行数据可视化的研究人员和从业者来说,本教程是一个宝贵的资源。

2025-07-04 00:30:00 369

原创 【科研绘图系列】基于R语言的种质资源评分相关性分析与可视化教程

本教程通过R语言及其相关数据可视化包,详细介绍了如何对种质资源的基因组选择评分和未来气候评分进行相关性分析和可视化。教程从数据准备开始,逐步引导读者完成相关性分析、散点图绘制以及特定国家或地区的突出显示。通过详细的代码示例和解释,读者可以学习到如何准备数据、计算相关性、绘制散点图、添加颜色渐变以及组合多个图形。本教程不仅提供了实用的代码示例,还展示了如何通过数据可视化技术揭示种质资源评分之间的关系和分布情况。对于需要进行数据可视化的研究人员和从业者来说,本教程是一个宝贵的资源。

2025-07-04 00:00:00 150

原创 【科研绘图系列】基于R语言的种质资源PCA分析与可视化教程:基因组选择与未来气候评分

本教程通过R语言及其相关数据可视化包,详细介绍了如何对种质资源的PCA结果进行可视化,并结合基因组选择和未来气候评分进行综合分析。教程从数据准备开始,逐步引导读者完成PCA散点图的绘制以及综合可视化的制作。通过详细的代码示例和解释,读者可以学习到如何准备数据、绘制PCA散点图、添加颜色渐变以及组合多个图形。本教程不仅提供了实用的代码示例,还展示了如何通过数据可视化技术揭示种质资源的变异情况和评分影响。

2025-07-03 00:30:00 42

原创 【科研绘图系列】基于R语言的种质资源评分可视化教程:条形图与地理分布图

本教程通过R语言及其相关数据可视化包,详细介绍了如何对种质资源的评分数据进行可视化。教程分为两部分:第一部分是绘制条形图,展示不同国家和地区在基因组选择和未来气候评分中的表现;第二部分是绘制地理分布图,将种质资源的评分数据绘制在地图上,直观展示其地理分布。通过详细的代码示例和解释,读者可以学习到如何准备数据、绘制条形图、绘制地理分布图以及如何结合地图和图表展示种质资源的评分信息。本教程适用于农业科学、生物多样性保护和地理信息系统的研究人员和从业者,帮助他们更有效地展示和分析种质资源数据。

2025-07-03 00:00:00 68

原创 【科研绘图系列】基于R语言的种质资源交换网络地图绘制教程

本教程通过R语言及其相关地理绘图包,详细介绍了如何绘制种质资源交换网络地图。教程从数据准备开始,逐步引导读者完成世界地图的绘制、种质资源存储点的添加、连接线的绘制以及饼图的绘制。通过详细的代码示例和解释,读者可以学习到如何将种质资源的存储和交换情况直观地展示在地图上。本教程不仅提供了实用的代码示例,还展示了如何通过地理可视化技术揭示种质资源的全球分布和交换模式。

2025-07-02 00:30:00 135

原创 【科研绘图系列】基于R语言的复杂热图绘制教程:环境因素与染色体效应的可视化

本教程通过R语言及其`ComplexHeatmap`包,详细介绍了如何绘制复杂的热图,以可视化环境因素和染色体效应之间的关系。教程从数据准备开始,逐步引导读者完成自定义颜色方案的设置、热图注释的创建以及综合热图的绘制。通过详细的代码示例和解释,读者可以学习到如何将多个数据集组合成一个综合热图,并通过图例增强热图的可读性。本教程不仅提供了实用的代码示例,还展示了如何通过数据可视化技术揭示复杂数据集中的模式和关联。

2025-07-02 00:00:00 127

原创 【数据分析】环境数据降维与聚类分析教程:从PCA到可视化

本教程旨在通过R语言及其相关数据分析包,展示如何对环境数据进行主成分分析(PCA)和聚类分析,并将分析结果进行可视化。教程从数据预处理开始,逐步引导读者完成PCA分析、聚类分析以及结果的可视化展示。通过本教程,读者将能够掌握如何使用R语言对环境数据进行降维处理,提取关键信息,并通过聚类分析发现数据中的潜在模式。同时,教程还提供了多种可视化方法,帮助读者更直观地理解分析结果。

2025-07-01 00:15:00 466 1

原创 【科研绘图系列】R语言绘制世界地图分布(world map)

本教程通过R语言及其地理空间分析包,详细介绍了如何对环境数据进行空间聚类分析并进行可视化。从数据读取和转换,到距离矩阵的计算和层次聚类的实现,再到世界地图的获取和聚类结果的叠加显示,教程逐步展示了整个分析过程。

2025-07-01 00:00:00 153

原创 R语言机器学习算法实战系列(二十六)基于tidymodels的XGBoost二分类器全流程实战

本教程面向希望掌握 **R 中机器学习建模流程** 的初学者与进阶用户,提供了一个完整的实战案例。通过对 PimaIndiansDiabetes 数据集的分析,学习者将掌握从数据探索、预处理、模型训练、参数调优到模型解释的全过程。

2025-06-26 09:43:09 545

原创 【数据分析】分段逻辑回归示例分析(模拟数据)

提供了一个完整的分析流程,用于探索和可视化变量`BPFI`与二元结果`outcome`之间的非线性关系。通过模拟数据,构建逻辑回归和分段回归模型,计算预测值和统计值,并最终通过图形展示结果,脚本清晰地展示了`BPFI`在不同区间对`outcome`的影响差异。这种分析方法特别适用于研究具有阈值效应的变量关系,能够为医学、生物学等领域提供有价值的见解。

2025-06-25 08:47:47 294

原创 【科研绘图系列】R语言绘制论文组合图(multiple plots)

通过处理和可视化病毒中和实验和SPR实验数据,提供了一种系统的方法来分析和展示不同突变组合的中和效价(IC50)和抗体亲和力(KD)分布及其统计信息。代码利用`ggplot2`和`ComplexHeatmap`生成了多种图形,包括热图、富集条形图、拟合曲线图、EC50值条形图和SPR传感器图,以直观展示数据的分布和变化。通过计算几何平均值、几何标准差和几何置信区间,并添加点图和误差条,代码成功地突出了关键信息,使得读者能够清晰地理解不同突变组合的中和特性和抗体亲和力。

2025-06-24 01:00:00 51

原创 【科研绘图系列】R语言绘制论文组合图(multiple plots)

通过处理和可视化小鼠实验数据,提供了一种系统的方法来分析和展示不同实验组的小鼠在不同时间点的抗体浓度和中和效价(ID50)分布及其统计信息。代码利用`ggplot2`生成了多种图形,包括条形图、拟合曲线图、中和效价条形图、中和效价折线图和相关性图,以直观展示数据的分布和变化。通过计算几何平均值、几何标准差和几何置信区间,并添加点图和误差条,代码成功地突出了关键信息,使得读者能够清晰地理解不同实验组的抗体反应和中和特性。

2025-06-24 00:00:00 69

原创 【工具】Eclipse:一个用于对两个或多个非靶向液相色谱-质谱代谢组学数据集进行比对的 Python 软件包

【工具】Eclipse:一个用于对两个或多个非靶向液相色谱-质谱代谢组学数据集进行比对的 Python 软件包

2025-06-23 08:31:19 983

原创 【科研绘图系列】R语言绘制论文组合图形(multiple plots)

通过处理和可视化病毒突变和中和抗体效价(IC50)数据,提供了一种系统的方法来分析和展示不同突变位点和突变组合的中和特性。代码利用`ggplot2`、`ComplexHeatmap`等包生成了多种图形,包括折线图、热图、条形图和富集曲线图,以直观展示突变位点的逃逸分数、IC50值分布及其统计信息。通过限制IC50值的范围、筛选特定突变组合、计算统计显著性,并添加标签和置信区间,代码成功地突出了关键信息,使得读者能够清晰地理解不同突变组合的中和特性。

2025-06-23 01:00:00 161

原创 【科研绘图系列】R语言绘制论文组合图形(multiple plots)

通过处理和可视化病毒中和实验数据,提供了一种系统的方法来分析和展示不同病毒变体的中和抗体效价(IC50)分布。代码利用`ggplot2`生成了多种图形,包括点图、箱线图、密度分布图和散点图,以直观展示IC50值的分布和统计信息。通过限制IC50值的范围、筛选特定变体、计算中和比例,并添加阈值标记和文本标签,代码成功地突出了关键信息,使得读者能够清晰地理解不同变体的中和特性。

2025-06-23 00:00:00 430

原创 【工具】DiSC:一种用于快速分析个体水平单细胞 RNA 测序数据差异表达的统计工具

【工具】DiSC:一种用于快速分析个体水平单细胞 RNA 测序数据差异表达的统计工具

2025-06-22 10:50:56 809

原创 【工具】CrossAttOmics:基于交叉注意力的多组学数据整合技术

【工具】CrossAttOmics:基于交叉注意力的多组学数据整合技术

2025-06-22 10:44:16 383

原创 【科研绘图系列】R语言绘制circos图形(circos plot)

通过模拟数据生成了一个复杂的可视化图表,结合了环形图和条形图/箱线图,展示了受试者的年龄、BMI、性别、种族和IRIS状态。通过精心设计的数据处理和图形样式定义,代码成功地将受试者的关键信息以一种清晰、直观的方式呈现出来。环形图和条形图/箱线图的结合使用,使得读者能够从不同的角度理解数据。

2025-06-21 11:47:36 982

原创 【科研绘图系列】R语言绘制实验设计图(复现系列)

通过模拟数据生成了一个复杂的患者治疗过程可视化图表。它展示了每个患者的治疗阶段(诱导治疗、中断治疗和维持治疗),以及关键事件(如CR、PR、SD、PD、DEAD、Drop-out和Ongoing)。通过精心设计的数据处理和图形样式定义,代码成功地将患者的治疗历程以一种清晰、直观的方式呈现出来。图表中使用了不同的颜色、形状和线型来区分不同的事件和状态,使得读者能够轻松地理解每个患者的治疗过程和关键事件。这种可视化的图表对于医学研究和临床实践中的治疗效果评估具有重要意义。

2025-06-21 11:04:04 81

原创 【数据分析】基于梯度提升的基因调控网络预测工具

pgBoost的贡献在于提供了一个强大的工具,帮助研究人员从大量的候选调控链接中筛选出最有可能的调控关系,从而推动基因调控网络的研究。通过整合多种数据源和使用先进的预测算法,pgBoost能够为基因调控网络的研究提供有力支持,推动相关领域的研究进展。

2025-06-20 01:00:00 335

原创 【科研绘图系列】python绘制论文组图(multiple plots)

这段代码提供了一个完整的工具集,用于分析和展示气候变化对健康和经济的影响。它通过一系列函数实现了从数据加载、处理到图表生成的全过程。代码的主要功能包括:1. **数据加载与处理**:从CSV文件加载历史数据和SSP情景数据,并进行必要的预处理。2. **绘制国家比较图**:生成国家间的比较图,展示不同情景下的健康和经济影响。3. **绘制时间序列图**:生成时间序列图,展示不同情景下的健康和经济指标随时间的变化。4. **生成表格**:计算并生成不同情景下的健康和经济指标的表格,便于比较不同情景下

2025-06-20 00:30:00 34

原创 【科研绘图系列】R语言绘制论文地图(map plot)

这段代码提供了一个完整的工具集,用于生成地理分布图和根系分布图。它通过一系列函数实现了从数据加载、处理到图表生成的全过程

2025-06-20 00:30:00 125

原创 【科研绘图系列】python绘制论文组合图形(multiple plots)

这段代码提供了一个完整的工具集,用于分析和展示不同国家在不同排放情景下的健康和经济影响。它通过一系列函数实现了从数据加载、处理到图表生成的全过程。

2025-06-19 01:00:00 38

原创 【科研绘图系列】python绘制地图和柱状图(map & bar plot)

这段代码通过Python的Pandas、Numpy、Matplotlib、Geopandas和Seaborn库,对全球OSA的分布和流行情况进行了可视化分析。代码分为两个主要部分:绘制世界地图展示OSA分布情况,以及绘制柱状图展示不同国家的OSA流行率。

2025-06-19 00:45:00 153

原创 【数据工程实战】IntelliGenesR用于生物标志物发现的可解释机器学习分析流程

IntelliGenesR是一个新颖的机器学习(ML)流程,旨在通过多组学数据(包括全基因组测序、RNA-seq、临床和人口统计学信息)发现与疾病预测相关的生物标志物,并进行高精度的疾病预测。该流程结合了传统的统计方法和先进的机器学习算法,通过多组学数据的整合分析,发现新的生物标志物并预测疾病。该流程不仅能够提高疾病预测的准确性,还能为个性化医疗提供支持,帮助发现新的治疗靶点和干预措施。

2025-06-18 08:07:18 228

原创 【数据工程实战】Amplicon sequence扩增子下游数据分析流程

通过 R 语言和相关生物信息学工具,对微生物组数据进行详细的分析。它涵盖了从原始序列数据到微生物群落结构和功能的全面分析,旨在帮助研究人员理解微生物群落的组成、多样性和动态变化。教材特别关注了如何通过微生物组数据揭示微生物群落的生态学特征和潜在功能,以及如何通过统计分析和可视化方法展示这些特征。

2025-06-18 08:07:06 142

原创 【科研绘图系列】python绘制论文图(plot)

这段代码通过Python的Pandas、Numpy和Matplotlib库,对气温数据和健康风险数据进行了可视化分析。代码的主要目的是通过图表展示全球变暖对气温的影响,以及气温变化对健康风险(特别是睡眠呼吸暂停综合征,OSA)的影响。

2025-06-18 00:45:00 34

原创 【科研绘图系列】python绘制论文图(plots)

这段代码通过Python编程语言,结合Pandas、Matplotlib和Numpy库,对法国2023年与历史时期气温变化对健康和经济的影响进行了全面的分析和建模。代码首先读取并筛选数据,然后绘制了RR曲线和气温对比图,直观地展示了气温变化对健康风险的影响。

2025-06-18 00:15:00 54

原创 【数据分析】广义可加模型(Generalized Additive Models, GAM)分析数据中非线性关系

这些代码的最终作用是为每个研究拟合一个GAM,以估计血清阳性率和GMT随时间差异的变化。通过这些模型,研究人员可以评估免疫反应随时间的维持情况,这对于理解疫苗效力的持久性或自然感染后的免疫持久性至关重要。结果数据框提供了每个研究的估计值和95%置信区间,这些信息可以用来绘制图表,直观展示不同研究中免疫反应随时间的变化趋势。通过比较不同研究组的结果,研究人员可以识别出哪些因素可能影响免疫反应的持久性,这对于设计更有效的疫苗接种策略和改进疾病控制措施具有重要意义。

2025-06-17 01:00:00 134

原创 【科研绘图系列】R语言绘制论文组图系列(multiple plots)

本文档通过一系列数据处理和可视化步骤,详细分析了流感病毒(H3N2和H1N1)的血凝抑制(HI)滴度数据。通过加载和预处理数据,定义了一系列函数来处理和可视化数据。主要图表包括HI滴度随时间的变化趋势、氨基酸替换数量与HI滴度的关系,以及不同研究中HI滴度的血清阳性率和几何平均值的变化。此外,还使用了广义可加模型(GAM)来拟合HI滴度随时间的变化趋势,揭示了其非线性关系。这些分析结果为理解流感病毒的交叉反应性和免疫反应提供了重要的科学依据。

2025-06-17 00:15:00 62

原创 【科研绘图系列】R语言绘制多组柱状图(bar plot)

这段代码的目的是对雄激素处理组(Androgens)在0 nM浓度下的数据进行统计分析,主要计算了每个雄激素组的均值(Mean)和标准差(SD),并对这些数据进行了可视化展示。

2025-06-16 00:30:00 162

### 【生物信息学】基于R语言的STAMP图绘制:宏基因组数据分析与可视化

内容概要:本文介绍了如何使用R语言绘制STAMP图(STAMP Plot),这是一种用于宏基因组数据分析的统计图表。STAMP图能够展示不同组别间的效应大小、置信区间及统计显著性。文中详细描述了数据准备、T检验结果生成、画图数据准备以及最终图表的绘制过程。具体步骤包括加载必要的R包、导入和预处理数据、进行T检验以生成p值,并使用ggplot2库绘制STAMP图的三个主要部分:左侧的组间均值条形图、中间的组间差异检验结果图(T检验结果)和右侧的T检验p值图。最后,通过patchwork包将这三个图形拼接成一个完整的STAMP图。 适合人群:具备一定R语言编程基础,对生物信息学和宏基因组数据分析感兴趣的科研工作者。 使用场景及目标:①理解宏基因组数据分析中STAMP图的作用及其组成部分;②掌握如何用R语言实现STAMP图的绘制,包括数据预处理、统计分析和可视化。 其他说明:此文档仅限于个人自学使用,禁止商业或二次转载。文中使用的示例数据来自著名的鸢尾花数据集(iris),并且提供了详细的代码解释,帮助读者更好地理解和实践。此外,文档还提及了如何调整图表的主题和样式,以确保最终输出与STAMP软件的结果一致。

2025-04-20

### 数据科学R语言基础图形合集:科研绘图指南与实现

内容概要:本文档是关于R语言的基础图形合集,详细介绍了多种常见图形的绘制方法及其应用场景。文档首先强调了图形可视化在数据分析中的重要性,指出R语言作为统计学家为解决统计问题而开发的语言,在数据可视化方面具有显著优势。随后,文档依次讲解了散点图、直方图、箱线图、面积图、热图、相关图、折线图、韦恩图、火山图、饼图、密度曲线图、边界散点图、边缘箱图/直方图、拟合散点图、相关系数图、水平发散型文本、水平棒棒糖图、去棒棒糖图、时间序列图、堆叠面积图、分层树形图、聚类图、气泡图、小提琴图、核密度图、柱状图、连接散点图、二维密度图、条形图、雷达图、词云、平行坐标图、棒棒糖图、循环条形图、分组堆积图、矩形树图、圆圈图、系统树图、圆形图、分组线条图、面积图、面积堆积图、Streamgraph等多种图形的绘制方式,并提供了相应的代码示例。 适用人群:适用于具有一定编程基础的数据分析师、科研人员以及对R语言感兴趣的自学者。 使用场景及目标:①帮助读者理解不同类型图形的特点及适用场景;②通过实际案例和代码示例,指导读者如何利用R语言进行数据可视化;③提升读者的数据分析能力,使其能够根据具体问题选择合适的可视化工具和技术。 其他说明:本文档仅用于自学,禁止任何形式的商业或二次转载,如需引用部分内容,请联系作者获取授权。文档内容丰富详实,不仅涵盖了图形绘制的基本语法,还深入探讨了图形设计的原则和技巧,旨在帮助读者掌握R语言图形可视化的精髓。

2025-04-20

科研绘图R语言ggpubr包在数据可视化中的应用:多种图表类型与统计分析整合

内容概要:本文档介绍了R语言中的ggpubr包,该包作为ggplot2的一个扩展工具,旨在简化科研绘图过程并提供更直观的绘图方式。文档详细讲解了ggpubr包的安装方法、数据准备以及多种类型的图表绘制,包括密度图、柱状图、箱线图、小提琴图、点图、有序条形图、偏差图、棒棒糖图、散点图、气泡图、连线图和二维密度图等。特别强调了stat_compare_means函数的应用,它可以进行假设检验并将结果直接展示在图形上,极大地方便了科研人员和数据分析师的工作。 适合人群:具备一定R语言基础并希望提高科研绘图能力的研究人员、数据分析师和学生。 使用场景及目标:①学习如何利用ggpubr包快速高效地创建高质量的科研图表;②掌握不同类型图表的绘制方法及其应用场景;③理解如何通过图形直观展示数据差异及统计检验结果,提升数据分析和报告的质量。 其他说明:文档禁止商业或二次转载,仅供自学使用。在学习过程中,建议读者跟随示例代码进行实践操作,同时结合实际研究需求调整参数,以达到最佳的绘图效果。此外,文档提供了多种图表组合的方式,如边沿图、混合图表等高级技巧,帮助用户创建更加复杂和美观的可视化作品。

2025-04-20

科研绘图基于ggplot2的箱线图绘制:带有出现率百分比的多组别数据分布比较及可视化

内容概要:本文介绍了如何使用ggplot2包绘制带有出现率百分比的箱线图,并展示了三种不同风格的箱线图:普通ggplot2风格、prism风格以及网格状箱线图。首先,箱线图能提供数据的中位数、四分位数、异常值、最小值和最大值及偏斜性等信息,非常适合比较不同组别的数据分布。文章以鸢尾花数据集为例,详细讲解了绘制箱线图的具体步骤,包括加载R包、导入数据、处理数据并计算每个分组中Sepal.Length指标的出现率。接着,通过ggplot2的函数逐步构建箱线图,如geom_boxplot()、stat_boxplot()、geom_point()等,最后对图表进行美化,如调整坐标轴、添加文本标签、设置点大小比例尺等。此外,还介绍了如何使用ggprism包实现prism风格的箱线图,以及patternplot包创建网格状箱线图,以满足不同场景下的可视化需求。 适合人群:具备一定R语言基础,从事生物信息学或数据分析的研究人员。 使用场景及目标:①科研工作者需要展示不同组别数据分布特征时;②希望将R绘图与Prism软件中的数据可视化风格统一;③需要创建网格状箱线图来直观比较多个组别或条件下的数据分布。 阅读建议:由于涉及到较多R代码细节,在阅读过程中应结合实际操作练习,理解每个函数的作用及其参数配置,同时注意代码中的注释说明。

2025-04-20

科研绘图领域:tidyplots包替代ggplot2实现高效美观的论文图表制作

内容概要:本文介绍了R语言中的新工具——tidyplots,它是新一代的科研绘图包,旨在简化科研用图表的创建流程,提供了一套更加简洁直观且高效的语法。与传统的ggplot2相比,在生成用于科学研究和学术出版物级别的图形方面,tidyplots拥有更高的灵活性。文中不仅详细解释了如何安装此软件包(包括正式发布版本与开发者分支),而且列举了很多具体的实例来展示不同的绘图方法及其效果,如添加均值线段图、堆叠柱状图等各类高级操作,并探讨了几种常见的颜色搭配技巧。 适合人群:对于希望通过R编程快速生成高质量统计图的研究工作者来说是非常实用的内容,特别有助于那些从事自然科学领域研究并且需要频繁进行数据分析汇报的人群。 使用场景及目标:当研究人员想要利用R环境绘制精准、精美的数据分布特征图时,可以考虑采用这个强大而灵活的新款作图工具代替旧有选项。无论是在撰写期刊文章还是参与研讨会演示过程中,都能借助tidyplots构建符合行业标准的专业图表,提高成果展示的效果和说服力。 其他说明:推荐感兴趣的读者进一步访问官方提供的帮助文档,了解更多细节和技术内幕。此外还附上了几个关键链接以便于后续查阅资料以及

2025-03-25

科研绘图系列:R与Python在数据可视化中的应用及代码比较

内容概要:本文详细比较了R和Python在绘制散点图、箱线图、条形图和热图时的实现方式和代码细节。R因其强大的统计功能和丰富的图形库,在数据分析和可视化方面具有明显优势;而Python凭借其通用性和灵活的数据可视化库,同样适用于科学计算和数据可视化任务。通过具体实例展示了两种语言的各自特点,如R的ggplot2与Python的matplotlib/seaborn库的应用,并利用reticulate包实现了两者的协作,便于不同工具间的数据流动。 适合人群:对数据可视化感兴趣的科研人员、学生以及数据科学家;有一定编程基础并希望深入了解R和Python绘图能力的专业人士。 使用场景及目标:用于科学研究和技术报告中的图表制作;学习不同编程语言的数据可视化技术和最佳实践;探索如何结合R和Python的优势进行高效的数据展示。 其他说明:文中附有详细的代码片段及其解释,有助于读者理解和实践两种语言的具体用法;注意本文禁止商业二次修改,仅限个人自学使用,确保尊重作者权利的同时保障资料的质量与权威性。

2025-03-25

【科研绘图系列】R语言绘制SCI论文图合集

【科研绘图系列】R语言绘制SCI论文图合集 R语言绘制SCI论文,提供完整的数据和代码,方便大家学习

2025-02-19

在R语言中,安装R包是数据分析过程中不可或缺的一部分 当你需要执行特定的统计测试、可视化或其他任务时,你可能会发现相应的功能已经被封装在一个或多个R包中

在R语言中,安装R包是数据分析过程中不可或缺的一部分。当你需要执行特定的统计测试、可视化或其他任务时,你可能会发现相应的功能已经被封装在一个或多个R包中。然而,对于新手或需要一次性安装多个R包的用户来说,这个过程可能会有些繁琐。为了大规模安装所需要的R包,你可以使用几种不同的方法。

2025-01-23

数据分析:随机森林random forest在二分类中的应用

数据分析:随机森林random forest在二分类中的应用

2024-11-19

科研人员如何在国内高速下载测序数据SRA

科研人员如何在国内高速下载测序数据SRA

2024-11-19

科研绘图系列:R语言绘制气泡图(bubble plot)

科研绘图系列:R语言绘制气泡图(bubble plot)

2024-11-19

数据分析:广义估计方程和混合线性模型的R和python语言实现教程

数据分析:广义估计方程和混合线性模型的R和python语言实现教程

2024-11-19

数据分析:RT-qPCR分析详解及R语言绘图结果图

数据分析:RT-qPCR分析详解及R语言绘图结果图

2024-11-19

数据分析:R语言详解方差分析ANOVA的计算步骤

数据分析:R语言详解方差分析ANOVA的计算步骤

2024-11-19

科研绘图系列:R语言ggheatmapper热图实操教程

科研绘图系列:R语言ggheatmapper热图实操教程

2024-11-19

科研绘图系列:Python语言绘制SCI论文图表案例

科研绘图系列:Python语言绘制SCI论文图表案例

2024-11-19

文献分享:MongolianHCC文章提供了基因组分析的代码

文献分享:MongolianHCC文章提供了基因组分析的代码

2024-11-19

数据分析:转录组差异分析总结(DESeq2+limma+edgeR+t-test/wilcox-test

本文要点由以下几点构成: 1. 下载以及导入测试数据(批量安装R包); 2. 基因表达count矩阵的标准化方法(F(R)PKM/TPM); 3. 基因整体水平分布(PCA/tSNE/UMAP;heatmap); 4. *DESeq2*差异分析实现以及结果解析; 5. *limma*差异分析实现以及结果解析; 6. *edgeR*差异分析实现以及结果解析; 7. 结合*t-test*或*wilcox-rank-sum-test*方法的差异分析实现以及结果解析(是否符合正态分布选择检验方法); 8. 不同方法的结果比较(volcano plot+heatmap+venn); 9. 总结。

2024-11-19

数据分析:基因突变瀑布图统计以及可视化

数据分析:基因突变瀑布图统计以及可视化

2024-11-19

科研绘图系列:R语言雨云图展示更多数据分布信息

雨云图(Raincloud Plot)是一种结合了箱线图(Boxplot)、抖动图(Jitter Plot)和核密度估计(Kernel Density Estimation, KDE)或小提琴图(Violin Plot)的复合图形,用于多角度展示数据的分布特征,特别是组间数据的分布和差异。在R语言中,我们可以使用ggplot2包和gghalves包等来实现雨云图的绘制。

2024-11-18

科研绘图系列:箱线图加百分比点图展示组间差异

在展示组组间差异的时候,可以选择箱线图(boxplot),但同时也可以加上圆圈暂时指标在组间的出现率,从而在一张图上展示了多种信息。本文旨在通过R代码实现上述的可视化结果图。

2024-11-16

使用ggplot2桑基图画图

R语言的ggplot2画桑基图,包含数据和完整代码,方便大家学习

2024-04-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除