- 博客(736)
- 收藏
- 关注

原创 数据分析:转录组差异分析方法总结(DESeq2+limma+edgeR+t-test/wilcox-test)
本文详细探讨了转录组数据分析中常用的差异分析R包(如DESeq2、limma和edgeR)及其与t-test/wilcox-rank-sum test的结合使用。文章首先介绍了如何下载和导入测试数据,并批量安装所需的R包。接着,讨论了基因表达count矩阵的标准化方法(如FPKM、TPM等),以及如何通过PCA、tSNE、UMAP和热图等方法进行基因整体水平分布的可视化。随后,文章分别展示了DESeq2、limma和edgeR的差异分析实现及结果解析,并探讨了结合t-test或wilcox-rank-sum
2023-07-17 11:01:18
23406
2
原创 【数据分析】HRS 数据的基线特征分析与可视化
本教程提供了一种基于 R 语言的分析方法,用于生成 HRS 数据的基线特征表,并评估不同组别之间的统计显著性差异。通过定义变量、计算统计量、计算 p 值和生成可视化图表,研究人员可以清晰地展示研究对象的基线特征,并评估不同组别之间的差异。这种方法不仅适用于 HRS 数据,还可以扩展到其他类似的研究项目,帮助研究人员更好地理解研究对象的基线特征,为后续的深入分析提供基础。
2025-07-09 00:30:00
5
原创 【数据分析】基于 HRS 数据的多变量相关性分析与可视化
本教程提供了一种基于 R 语言的分析方法,用于评估 HRS 数据中多个生物标志物和健康指标之间的相关性,并通过可视化图表展示这些关系。通过相关性矩阵的计算和可视化,研究人员可以直观地了解变量之间的相关性,为后续的深入分析提供依据。这种方法不仅适用于 HRS 数据,还可以扩展到其他类似的研究项目,帮助研究人员更好地理解不同健康指标之间的相互关系,为疾病机制的研究和临床决策提供数据支持。
2025-07-09 00:00:00
20
原创 【数据分析】基于 HRS 数据的虚弱指数与心血管疾病风险的非线性关系分析
本教程提供了一种基于 R 语言的分析方法,用于评估 FI 与 CVD 发生风险之间的非线性关系。通过数据分布对象的生成、Cox 比例风险模型的拟合、统计显著性检验和预测可视化,研究人员可以全面评估 FI 在 CVD 发生中的作用,并展示其统计显著性。最终生成的可视化图表不仅展示了 FI 与 CVD 发生风险之间的非线性关系,还标注了总体 p 值和非线性 p 值,为研究结果提供了直观的可视化展示。
2025-07-08 00:30:00
102
原创 【数据分析】R语言基于虚弱指数的心血管疾病风险评估
本教程提供了一种基于 R 语言的生存分析方法,用于评估虚弱指数对心血管疾病发生风险的影响。通过生存对象的创建、Kaplan-Meier 曲线的拟合、Cox 比例风险模型的拟合和 Log-rank 检验,研究人员可以全面评估 FI 对 CVD 发生风险的影响。最终生成的 Kaplan-Meier 曲线图表不仅展示了不同 FI 组别的生存概率随时间的变化,还标注了 HR 及其置信区间和 Log-rank p 值,为研究结果提供了直观的可视化展示。
2025-07-08 00:00:00
40
原创 【数据分析】HRS 研究中心血管疾病与虚弱指数的长期趋势分析
本教程提供了一种系统的方法,用于分析和可视化 HRS 数据中 CVD 与虚弱指数的长期趋势。通过 R 语言的强大功能,可以高效地处理和分析数据,生成直观的可视化图表。这种方法不仅适用于 HRS 数据,还可以扩展到其他类似的研究项目,帮助研究人员更好地理解心血管疾病与虚弱指数之间的关系,为临床决策和公共卫生政策制定提供数据支持。通过显著性测试和可视化展示,研究人员可以清晰地识别不同时间点 CVD 患者与非 CVD 患者之间的虚弱指数差异,从而为疾病管理和干预提供依据。
2025-07-07 00:15:00
128
原创 【数据分析】R语言多源数据的基线特征汇总
本教程提供了一种高效的方法,用于汇总和比较多个研究项目的基线数据。通过 R 语言的强大功能,可以快速处理和分析大量的数据,生成清晰的汇总表格。这种方法不仅适用于社会科学和医学研究,还可以扩展到其他领域,帮助研究人员更好地理解和比较不同数据集的特征。
2025-07-07 00:00:00
66
原创 【工具】AI-HOPE:提升精准医学研究中临床数据和基因组数据的整合水平
【工具】AI-HOPE:提升精准医学研究中临床数据和基因组数据的整合水平
2025-07-05 00:15:00
873
原创 【科研绘图系列】基于R语言的种质资源评分与气候聚类可视化教程
本教程通过R语言及其相关数据可视化包,详细介绍了如何对种质资源的评分数据进行聚类分析和可视化。教程从数据准备开始,逐步引导读者完成聚类分析、地理分布图绘制以及条形图绘制。通过详细的代码示例和解释,读者可以学习到如何准备数据、执行聚类分析、绘制地理分布图、绘制条形图以及组合多个图形。本教程不仅提供了实用的代码示例,还展示了如何通过数据可视化技术揭示种质资源评分在不同聚类和品种下的分布情况。对于需要进行数据可视化的研究人员和从业者来说,本教程是一个宝贵的资源。
2025-07-04 00:30:00
369
原创 【科研绘图系列】基于R语言的种质资源评分相关性分析与可视化教程
本教程通过R语言及其相关数据可视化包,详细介绍了如何对种质资源的基因组选择评分和未来气候评分进行相关性分析和可视化。教程从数据准备开始,逐步引导读者完成相关性分析、散点图绘制以及特定国家或地区的突出显示。通过详细的代码示例和解释,读者可以学习到如何准备数据、计算相关性、绘制散点图、添加颜色渐变以及组合多个图形。本教程不仅提供了实用的代码示例,还展示了如何通过数据可视化技术揭示种质资源评分之间的关系和分布情况。对于需要进行数据可视化的研究人员和从业者来说,本教程是一个宝贵的资源。
2025-07-04 00:00:00
150
原创 【科研绘图系列】基于R语言的种质资源PCA分析与可视化教程:基因组选择与未来气候评分
本教程通过R语言及其相关数据可视化包,详细介绍了如何对种质资源的PCA结果进行可视化,并结合基因组选择和未来气候评分进行综合分析。教程从数据准备开始,逐步引导读者完成PCA散点图的绘制以及综合可视化的制作。通过详细的代码示例和解释,读者可以学习到如何准备数据、绘制PCA散点图、添加颜色渐变以及组合多个图形。本教程不仅提供了实用的代码示例,还展示了如何通过数据可视化技术揭示种质资源的变异情况和评分影响。
2025-07-03 00:30:00
42
原创 【科研绘图系列】基于R语言的种质资源评分可视化教程:条形图与地理分布图
本教程通过R语言及其相关数据可视化包,详细介绍了如何对种质资源的评分数据进行可视化。教程分为两部分:第一部分是绘制条形图,展示不同国家和地区在基因组选择和未来气候评分中的表现;第二部分是绘制地理分布图,将种质资源的评分数据绘制在地图上,直观展示其地理分布。通过详细的代码示例和解释,读者可以学习到如何准备数据、绘制条形图、绘制地理分布图以及如何结合地图和图表展示种质资源的评分信息。本教程适用于农业科学、生物多样性保护和地理信息系统的研究人员和从业者,帮助他们更有效地展示和分析种质资源数据。
2025-07-03 00:00:00
68
原创 【科研绘图系列】基于R语言的种质资源交换网络地图绘制教程
本教程通过R语言及其相关地理绘图包,详细介绍了如何绘制种质资源交换网络地图。教程从数据准备开始,逐步引导读者完成世界地图的绘制、种质资源存储点的添加、连接线的绘制以及饼图的绘制。通过详细的代码示例和解释,读者可以学习到如何将种质资源的存储和交换情况直观地展示在地图上。本教程不仅提供了实用的代码示例,还展示了如何通过地理可视化技术揭示种质资源的全球分布和交换模式。
2025-07-02 00:30:00
135
原创 【科研绘图系列】基于R语言的复杂热图绘制教程:环境因素与染色体效应的可视化
本教程通过R语言及其`ComplexHeatmap`包,详细介绍了如何绘制复杂的热图,以可视化环境因素和染色体效应之间的关系。教程从数据准备开始,逐步引导读者完成自定义颜色方案的设置、热图注释的创建以及综合热图的绘制。通过详细的代码示例和解释,读者可以学习到如何将多个数据集组合成一个综合热图,并通过图例增强热图的可读性。本教程不仅提供了实用的代码示例,还展示了如何通过数据可视化技术揭示复杂数据集中的模式和关联。
2025-07-02 00:00:00
127
原创 【数据分析】环境数据降维与聚类分析教程:从PCA到可视化
本教程旨在通过R语言及其相关数据分析包,展示如何对环境数据进行主成分分析(PCA)和聚类分析,并将分析结果进行可视化。教程从数据预处理开始,逐步引导读者完成PCA分析、聚类分析以及结果的可视化展示。通过本教程,读者将能够掌握如何使用R语言对环境数据进行降维处理,提取关键信息,并通过聚类分析发现数据中的潜在模式。同时,教程还提供了多种可视化方法,帮助读者更直观地理解分析结果。
2025-07-01 00:15:00
466
1
原创 【科研绘图系列】R语言绘制世界地图分布(world map)
本教程通过R语言及其地理空间分析包,详细介绍了如何对环境数据进行空间聚类分析并进行可视化。从数据读取和转换,到距离矩阵的计算和层次聚类的实现,再到世界地图的获取和聚类结果的叠加显示,教程逐步展示了整个分析过程。
2025-07-01 00:00:00
153
原创 R语言机器学习算法实战系列(二十六)基于tidymodels的XGBoost二分类器全流程实战
本教程面向希望掌握 **R 中机器学习建模流程** 的初学者与进阶用户,提供了一个完整的实战案例。通过对 PimaIndiansDiabetes 数据集的分析,学习者将掌握从数据探索、预处理、模型训练、参数调优到模型解释的全过程。
2025-06-26 09:43:09
545
原创 【数据分析】分段逻辑回归示例分析(模拟数据)
提供了一个完整的分析流程,用于探索和可视化变量`BPFI`与二元结果`outcome`之间的非线性关系。通过模拟数据,构建逻辑回归和分段回归模型,计算预测值和统计值,并最终通过图形展示结果,脚本清晰地展示了`BPFI`在不同区间对`outcome`的影响差异。这种分析方法特别适用于研究具有阈值效应的变量关系,能够为医学、生物学等领域提供有价值的见解。
2025-06-25 08:47:47
294
原创 【科研绘图系列】R语言绘制论文组合图(multiple plots)
通过处理和可视化病毒中和实验和SPR实验数据,提供了一种系统的方法来分析和展示不同突变组合的中和效价(IC50)和抗体亲和力(KD)分布及其统计信息。代码利用`ggplot2`和`ComplexHeatmap`生成了多种图形,包括热图、富集条形图、拟合曲线图、EC50值条形图和SPR传感器图,以直观展示数据的分布和变化。通过计算几何平均值、几何标准差和几何置信区间,并添加点图和误差条,代码成功地突出了关键信息,使得读者能够清晰地理解不同突变组合的中和特性和抗体亲和力。
2025-06-24 01:00:00
51
原创 【科研绘图系列】R语言绘制论文组合图(multiple plots)
通过处理和可视化小鼠实验数据,提供了一种系统的方法来分析和展示不同实验组的小鼠在不同时间点的抗体浓度和中和效价(ID50)分布及其统计信息。代码利用`ggplot2`生成了多种图形,包括条形图、拟合曲线图、中和效价条形图、中和效价折线图和相关性图,以直观展示数据的分布和变化。通过计算几何平均值、几何标准差和几何置信区间,并添加点图和误差条,代码成功地突出了关键信息,使得读者能够清晰地理解不同实验组的抗体反应和中和特性。
2025-06-24 00:00:00
69
原创 【工具】Eclipse:一个用于对两个或多个非靶向液相色谱-质谱代谢组学数据集进行比对的 Python 软件包
【工具】Eclipse:一个用于对两个或多个非靶向液相色谱-质谱代谢组学数据集进行比对的 Python 软件包
2025-06-23 08:31:19
983
原创 【科研绘图系列】R语言绘制论文组合图形(multiple plots)
通过处理和可视化病毒突变和中和抗体效价(IC50)数据,提供了一种系统的方法来分析和展示不同突变位点和突变组合的中和特性。代码利用`ggplot2`、`ComplexHeatmap`等包生成了多种图形,包括折线图、热图、条形图和富集曲线图,以直观展示突变位点的逃逸分数、IC50值分布及其统计信息。通过限制IC50值的范围、筛选特定突变组合、计算统计显著性,并添加标签和置信区间,代码成功地突出了关键信息,使得读者能够清晰地理解不同突变组合的中和特性。
2025-06-23 01:00:00
161
原创 【科研绘图系列】R语言绘制论文组合图形(multiple plots)
通过处理和可视化病毒中和实验数据,提供了一种系统的方法来分析和展示不同病毒变体的中和抗体效价(IC50)分布。代码利用`ggplot2`生成了多种图形,包括点图、箱线图、密度分布图和散点图,以直观展示IC50值的分布和统计信息。通过限制IC50值的范围、筛选特定变体、计算中和比例,并添加阈值标记和文本标签,代码成功地突出了关键信息,使得读者能够清晰地理解不同变体的中和特性。
2025-06-23 00:00:00
430
原创 【工具】DiSC:一种用于快速分析个体水平单细胞 RNA 测序数据差异表达的统计工具
【工具】DiSC:一种用于快速分析个体水平单细胞 RNA 测序数据差异表达的统计工具
2025-06-22 10:50:56
809
原创 【科研绘图系列】R语言绘制circos图形(circos plot)
通过模拟数据生成了一个复杂的可视化图表,结合了环形图和条形图/箱线图,展示了受试者的年龄、BMI、性别、种族和IRIS状态。通过精心设计的数据处理和图形样式定义,代码成功地将受试者的关键信息以一种清晰、直观的方式呈现出来。环形图和条形图/箱线图的结合使用,使得读者能够从不同的角度理解数据。
2025-06-21 11:47:36
982
原创 【科研绘图系列】R语言绘制实验设计图(复现系列)
通过模拟数据生成了一个复杂的患者治疗过程可视化图表。它展示了每个患者的治疗阶段(诱导治疗、中断治疗和维持治疗),以及关键事件(如CR、PR、SD、PD、DEAD、Drop-out和Ongoing)。通过精心设计的数据处理和图形样式定义,代码成功地将患者的治疗历程以一种清晰、直观的方式呈现出来。图表中使用了不同的颜色、形状和线型来区分不同的事件和状态,使得读者能够轻松地理解每个患者的治疗过程和关键事件。这种可视化的图表对于医学研究和临床实践中的治疗效果评估具有重要意义。
2025-06-21 11:04:04
81
原创 【数据分析】基于梯度提升的基因调控网络预测工具
pgBoost的贡献在于提供了一个强大的工具,帮助研究人员从大量的候选调控链接中筛选出最有可能的调控关系,从而推动基因调控网络的研究。通过整合多种数据源和使用先进的预测算法,pgBoost能够为基因调控网络的研究提供有力支持,推动相关领域的研究进展。
2025-06-20 01:00:00
335
原创 【科研绘图系列】python绘制论文组图(multiple plots)
这段代码提供了一个完整的工具集,用于分析和展示气候变化对健康和经济的影响。它通过一系列函数实现了从数据加载、处理到图表生成的全过程。代码的主要功能包括:1. **数据加载与处理**:从CSV文件加载历史数据和SSP情景数据,并进行必要的预处理。2. **绘制国家比较图**:生成国家间的比较图,展示不同情景下的健康和经济影响。3. **绘制时间序列图**:生成时间序列图,展示不同情景下的健康和经济指标随时间的变化。4. **生成表格**:计算并生成不同情景下的健康和经济指标的表格,便于比较不同情景下
2025-06-20 00:30:00
34
原创 【科研绘图系列】R语言绘制论文地图(map plot)
这段代码提供了一个完整的工具集,用于生成地理分布图和根系分布图。它通过一系列函数实现了从数据加载、处理到图表生成的全过程
2025-06-20 00:30:00
125
原创 【科研绘图系列】python绘制论文组合图形(multiple plots)
这段代码提供了一个完整的工具集,用于分析和展示不同国家在不同排放情景下的健康和经济影响。它通过一系列函数实现了从数据加载、处理到图表生成的全过程。
2025-06-19 01:00:00
38
原创 【科研绘图系列】python绘制地图和柱状图(map & bar plot)
这段代码通过Python的Pandas、Numpy、Matplotlib、Geopandas和Seaborn库,对全球OSA的分布和流行情况进行了可视化分析。代码分为两个主要部分:绘制世界地图展示OSA分布情况,以及绘制柱状图展示不同国家的OSA流行率。
2025-06-19 00:45:00
153
原创 【数据工程实战】IntelliGenesR用于生物标志物发现的可解释机器学习分析流程
IntelliGenesR是一个新颖的机器学习(ML)流程,旨在通过多组学数据(包括全基因组测序、RNA-seq、临床和人口统计学信息)发现与疾病预测相关的生物标志物,并进行高精度的疾病预测。该流程结合了传统的统计方法和先进的机器学习算法,通过多组学数据的整合分析,发现新的生物标志物并预测疾病。该流程不仅能够提高疾病预测的准确性,还能为个性化医疗提供支持,帮助发现新的治疗靶点和干预措施。
2025-06-18 08:07:18
228
原创 【数据工程实战】Amplicon sequence扩增子下游数据分析流程
通过 R 语言和相关生物信息学工具,对微生物组数据进行详细的分析。它涵盖了从原始序列数据到微生物群落结构和功能的全面分析,旨在帮助研究人员理解微生物群落的组成、多样性和动态变化。教材特别关注了如何通过微生物组数据揭示微生物群落的生态学特征和潜在功能,以及如何通过统计分析和可视化方法展示这些特征。
2025-06-18 08:07:06
142
原创 【科研绘图系列】python绘制论文图(plot)
这段代码通过Python的Pandas、Numpy和Matplotlib库,对气温数据和健康风险数据进行了可视化分析。代码的主要目的是通过图表展示全球变暖对气温的影响,以及气温变化对健康风险(特别是睡眠呼吸暂停综合征,OSA)的影响。
2025-06-18 00:45:00
34
原创 【科研绘图系列】python绘制论文图(plots)
这段代码通过Python编程语言,结合Pandas、Matplotlib和Numpy库,对法国2023年与历史时期气温变化对健康和经济的影响进行了全面的分析和建模。代码首先读取并筛选数据,然后绘制了RR曲线和气温对比图,直观地展示了气温变化对健康风险的影响。
2025-06-18 00:15:00
54
原创 【数据分析】广义可加模型(Generalized Additive Models, GAM)分析数据中非线性关系
这些代码的最终作用是为每个研究拟合一个GAM,以估计血清阳性率和GMT随时间差异的变化。通过这些模型,研究人员可以评估免疫反应随时间的维持情况,这对于理解疫苗效力的持久性或自然感染后的免疫持久性至关重要。结果数据框提供了每个研究的估计值和95%置信区间,这些信息可以用来绘制图表,直观展示不同研究中免疫反应随时间的变化趋势。通过比较不同研究组的结果,研究人员可以识别出哪些因素可能影响免疫反应的持久性,这对于设计更有效的疫苗接种策略和改进疾病控制措施具有重要意义。
2025-06-17 01:00:00
134
原创 【科研绘图系列】R语言绘制论文组图系列(multiple plots)
本文档通过一系列数据处理和可视化步骤,详细分析了流感病毒(H3N2和H1N1)的血凝抑制(HI)滴度数据。通过加载和预处理数据,定义了一系列函数来处理和可视化数据。主要图表包括HI滴度随时间的变化趋势、氨基酸替换数量与HI滴度的关系,以及不同研究中HI滴度的血清阳性率和几何平均值的变化。此外,还使用了广义可加模型(GAM)来拟合HI滴度随时间的变化趋势,揭示了其非线性关系。这些分析结果为理解流感病毒的交叉反应性和免疫反应提供了重要的科学依据。
2025-06-17 00:15:00
62
原创 【科研绘图系列】R语言绘制多组柱状图(bar plot)
这段代码的目的是对雄激素处理组(Androgens)在0 nM浓度下的数据进行统计分析,主要计算了每个雄激素组的均值(Mean)和标准差(SD),并对这些数据进行了可视化展示。
2025-06-16 00:30:00
162
### 【生物信息学】基于R语言的STAMP图绘制:宏基因组数据分析与可视化
2025-04-20
### 数据科学R语言基础图形合集:科研绘图指南与实现
2025-04-20
科研绘图R语言ggpubr包在数据可视化中的应用:多种图表类型与统计分析整合
2025-04-20
科研绘图基于ggplot2的箱线图绘制:带有出现率百分比的多组别数据分布比较及可视化
2025-04-20
科研绘图领域:tidyplots包替代ggplot2实现高效美观的论文图表制作
2025-03-25
科研绘图系列:R与Python在数据可视化中的应用及代码比较
2025-03-25
在R语言中,安装R包是数据分析过程中不可或缺的一部分 当你需要执行特定的统计测试、可视化或其他任务时,你可能会发现相应的功能已经被封装在一个或多个R包中
2025-01-23
数据分析:转录组差异分析总结(DESeq2+limma+edgeR+t-test/wilcox-test
2024-11-19
科研绘图系列:R语言雨云图展示更多数据分布信息
2024-11-18
科研绘图系列:箱线图加百分比点图展示组间差异
2024-11-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人