【工具】AI-HOPE:提升精准医学研究中临床数据和基因组数据的整合水平

在这里插入图片描述

文章目录

介绍

临床癌症研究的日益复杂性促使对能够整合临床数据和基因组数据的自动化生物信息学工具的需求大幅增加,这些工具旨在加快研究进程。

我们推出了“高优化与精准医疗人工智能代理”(AI-HOPE)这一基于人工智能的系统,它能让领域专家通过自然语言交互来进行综合数据分析。该系统由大型语言模型驱动,能够理解用户指令,将其转化为可执行代码,并自主分析本地存储的数据。它支持灵活的关联研究、子集比较、临床患病率评估和生存分析。此外,AI-HOPE 还能进行全局变量扫描,以识别与用户定义结果显著相关的特征,从而成为推进精准医疗研究的强大且直观的工具。重要的是,其封闭系统设计可防止临床数据泄露。为了展示其实用性,AI-HOPE 被应用于癌症基因组图谱数据,以解决两个临床问题。首先,它发现晚期结直肠癌中 TP53 突变的显著富集情况,而早期病例则不然。其次,它揭示了 KRAS 突变与 FOLFOX 治疗患者无进展生存期较差之间存在显著关联。这些发现与已有的文献相一致,并表明 AI-HOPE 能够独立生成有意义的见解,无需事先的假设。通过消除编程障碍并简化复杂的分析过程,AI-HOPE 桥接了数据复杂性和研究需求之间的差距。凭借其可扩展且适应性强的框架,AI-HOPE 有可能为各种生物医学研究领域提供支持,推动转化研究中的创新和效率提升。

The growing complexity of clinical cancer research has fueled a surge in demand for automated bioinformatics tools capable of integrating clinical and genomic data to accelerate discovery efforts.

We present the Artificial Intelligence Agent for High-Optimization and Precision Medicine (AI-HOPE), an AI-driven system that enables domain experts to conduct integrative data analyses through natural language interactions. Powered by Large Language Models, AI-HOPE interprets user instructions, converts them into executable code, and autonomously analyzes locally stored data. It supports flexible association studies, subset comparisons, clinical prevalence assessments and survival analyses. In addition, AI-HOPE enables global variable scans to identify features significantly associated with a user-defined outcome, making a powerful and intuitive tool for advancing precision medicine research. Importantly, its closed-system design prevents clinical data leakage. To demonstrate its utility, AI-HOPE was applied to The Cancer Genome Atlas data to address two clinical questions. First, it identified significant enrichment of TP53 mutations in late-stage colorectal cancer compared to early-stage cases. Second, it uncovered a strong association between KRAS mutations and poorer progression-free survival in FOLFOX-treated patients. These findings align with established literature and demonstrate AI-HOPE’s ability to generate meaningful insights independently, without prior assumptions. By removing programming barriers and simplifying complex analyses, AI-HOPE bridges the gap between data complexity and research needs. With its scalable and adaptable framework, AI-HOPE has the potential to support diverse biomedical research fields, driving innovation and efficiency in translational studies.

在这里插入图片描述

精准医疗正在彻底改变医疗保健行业,它根据个体的基因、环境和生活方式等因素来定制治疗方案(詹姆斯森和隆戈 2015 年)。这种方法的核心在于基于临床和基因组数据的综合分析,这能全面揭示疾病机制和治疗反应。然而,此类数据量巨大且复杂,给临床研究带来了严峻挑战(阿什利 2015 年)。要提取有意义的见解,需要进行先进的生物信息学分析,将基因组数据与临床元数据(如年龄、性别等)以及治疗结果(如生存数据)结合起来进行解读。不幸的是,标准的生物信息学分析往往需要编程技能,这给许多临床研究人员带来了时间限制和技术要求方面的障碍。
为应对这些挑战,迫切需要具备端到端生物信息学分析能力的自动化工具来简化临床研究流程。大型语言模型(LLM)的最新进展已经彻底改变了生物学领域的人工智能应用,使其具备了诸如疾病诊断和药物发现等变革性的能力(Flam-Shepherd 等人,2022 年)。LLM 的一个关键特点是其对话式界面,它使用户能够用自然语言提供指令来执行复杂任务。这种方法超越了传统的基于图形用户界面的平台,并提供了完全自动化的解决方案。(周等人,2024 年)。已经出现了多个用于组学数据分析的 LLM 代理系统。例如,CellAgent 在自动化单细胞 RNA 测序数据处理方面表现出了有效性(肖等人,2025 年),而像 AutoBA 这样的工具则提供了常规的多组学分析能力(周等人,2024 年)。
尽管近期取得了进展,但临床研究的分析需求仍 largely未得到满足。当前基于语言模型的工具缺乏将临床元数据与基因组信息及治疗结果无缝整合的能力。诸如 Xena(Goldman 等人,2020 年)和 cBioPortal(Cerami 等人,2012 年)这类最先进的网络平台允许用户上传并分析自己的数据,但它们受到预定义分析模块和图形用户界面的限制。这些限制阻碍了用户主导的探索,并限制了用于关键临床研究应用(包括生物标志物发现、疾病进展建模和治疗效果评估)所需的灵活性(见补充结果和补充表 S1,作为在线生物信息学补充数据提供,以进行进一步比较)。为了克服这些限制,我们引入了用于高优化和精准医学的人工智能代理(AI-HOPE),这是一个基于语言模型的代理系统,通过自然语言查询能够实现灵活的关联研究和病例对照分析。AI-HOPE 提供了一个动态且可定制的分析环境,旨在满足精准医学研究不断变化的需求。AI-HOPE 采用了一套本地部署的 Llama3 模型。这种封闭式的系统设置避免了在线数据交换,并确保符合《健康保险可转移性和责任法案》(HIPAA)或《通用数据保护条例》(GDPR)等法规要求。AI-HOPE 的主要目标是提供必要的统计输出,如比值比、风险比和 Kaplan-Meier 生存曲线,以推动临床研究中的发现工作。
AI-HOPE 的功能通过使用来自癌症基因组图谱(TCGA)的数据进行的两项分析研究得到了验证。第一项研究分析了早期和晚期结直肠癌(CRC)患者中 TP53 突变的富集情况,其中 AI-HOPE 发现晚期(III/IV 期)CRC 中的 TP53 突变显著多于早期(I/II 期)病例。第二项研究考察了接受联合化疗 FOLFOX 治疗的患者的生存数据。使用 AI-HOPE,我们比较了具有和不具有 KRAS 突变的患者。分析显示,KRAS 突变与较差的无进展生存期(PFS)之间存在显著关联。这些结果突显了其能够生成与已有的科学发现相一致的可操作性见解的能力。总体而言,AI-HOPE 提供了一个可扩展且直观的框架,用于自主的临床数据分析。它在癌症研究之外也具有适应性,并支持其他生物医学领域的广泛应用。未来的改进措施,例如增加更多的统计工具和多组学功能,将进一步巩固其作为推动临床研究进展和提升患者治疗效果的关键资源的地位。

代码

https://github.com/Velazquez-Villarreal-Lab/AI-HOPE

在这里插入图片描述

参考

  • AI-HOPE: an AI-driven conversational agent for enhanced clinical and genomic data integration in precision medicine research
  • https://github.com/Velazquez-Villarreal-Lab/AI-HOPE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值