R语言机器学习算法实战系列(二十七)LASSO 与 Adaptive LASSO 在特征选择中的比较与应用

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!
在这里插入图片描述

介绍

在高维数据分析中,特征选择(Feature Selection)是提高模型泛化能力、减少计算成本并提升可解释性的关键步骤。LASSO(Least Absolute Shrinkage and Selection Operator)是一种广泛应用的线性模型正则化方法,能够通过对系数的 L1 范数惩罚实现变量选择。而 Adaptive LASSO(自适应 LASSO)则是在 LASSO 基础上的改进方法,引入了对各个变量的权重惩罚,实现更加灵活和精确的变量筛选。

本节内容通过模拟实验,系统地比较了这两种方法在特征选择中的表现,包括它们的系数收缩路径、预测误差(RMSE)分布以及整体稳健性,帮助学习者理解两种方法的理论基础和实际应用差异。

方法原理

LASSO 原理

LASSO 通过在最小化残差平方和的基础上引入 L1 正则项:

β ^ lasso = arg ⁡ min ⁡ β { 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值