「ubuntu」ubuntu通用的perf安装方法

文章介绍了如何通过源码安装Linux内核并安装perf性能测量工具,包括进入内核源码目录,执行编译和安装命令。此外,还列出了内核源码中tools目录下的其他可用工具。另外,提到了通过apt进行安装的选项,但具体内容需自行搜索。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、linux内核源码安装

如果你的内核是通过源码安装的,则在内核源码的tools下会有perf工具。安装如下:

cd linux-xxx-xxxx-xxx  //你的内核源码目录
sudo make -C tools/ perf_install prefix=/usr

等待编译安装完即可。
另外,tools目录下还有以下工具:

$ make -C tools/
make: Entering directory '/home/xxx/xenomai/linux-xxx-lts-5.10-dovetail-xenomai/tools'
Possible targets:

  acpi                   - ACPI tools
  bpf                    - misc BPF tools
  cgroup                 - cgroup tools
  cpupower               - a tool for all things x86 CPU power
  debugging              - tools for debugging
  firewire               - the userspace part of nosy, an IEEE-1394 traffic sniffer
  firmware               - Firmware tools
  freefall               - laptop accelerometer program for disk protection
  gpio                   - GPIO tools
  hv                     - tools used when in Hyper-V clients
  iio                    - IIO tools
  xxx-speed-select       - xxx Speed Select tool
  kvm_stat               - top-like utility for displaying kvm statistics
  leds                   - LEDs  tools
  liblockdep             - user-space wrapper for kernel locking-validator
  objtool                - an ELF object analysis tool
  pci                    - PCI tools
  perf                   - Linux performance measurement and analysis tool
  rpmb                   - Replay protected memory block access tool
  selftests              - various kernel selftests
  bootconfig             - boot config tool
  spi                    - spi tools
  tmon                   - thermal monitoring and tuning tool
  turbostat              - xxx CPU idle stats and freq reporting tool
  usb                    - USB testing tools
  virtio                 - vhost test module
  vm                     - misc vm tools
  wmi			- WMI interface examples
  x86_energy_perf_policy - xxx energy policy tool

You can do:
 $ make -C tools/ <tool>_install

  from the kernel command line to build and install one of
  the tools above

  $ make tools/all

  builds all tools.

  $ make tools/install

  installs all tools.

Cleaning targets:

  all of the above with the "_clean" string appended cleans
    the respective build directory.
  clean: a summary clean target to clean _all_ folders

二、apt安装

这个网上有教程,可以去搜索

<think>嗯,用户想在Ubuntu 22上安装CUDA 12.4和NCCL库。我得先检查一下CUDA 12.4的兼容性。根据引用[2],Hopper架构的H100需要nvidia-driver-550和CUDA 12.4,而Ubuntu 22.04 LTS在Ampere架构用的是驱动535和CUDA 12.3。不过用户要用CUDA 12.4,可能驱动需要升级到550。 首先,系统是Ubuntu 22.04,用户需要确认显卡型号。根据引用[1],用户用的是RTX 4060 Mobile,属于Ada Lovelace架构。引用[2]中提到Ada架构推荐驱动535和CUDA 12.3,但用户要装CUDA 12.4,可能需要更高驱动。不过引用[2]里Hopper架构需要驱动550和CUDA 12.4,可能这里可以通用? 接下来,步骤应该是安装驱动550。引用[3]提到用ubuntu-drivers devices查看可用驱动,但需要添加正确的驱动源。可能需要添加NVIDIA官方仓库或者使用graphics-drivers PPA。 然后,安装CUDA 12.4。官网的runfile可能更直接,避免包管理器版本冲突。安装完成后要配置环境变量,加入PATH和LD_LIBRARY_PATH。 接着安装NCCL库。CUDA Toolkit可能已经包含NCCL,但用户可能需要特定版本,所以需要从NVIDIA官网下载deb包安装。同时要确认CUDA和NCCL版本兼容性,CUDA 12.4对应NCCL 2.19.x以上。 依赖项方面,需要安装build-essential、dkms等,如引用[3]中的命令。同时,安装完成后要验证驱动和CUDA版本,使用nvidia-smi和nvcc -V检查。还要测试NCCL,可能需要下载测试样例编译运行。 兼容性方面,用户是Ada架构,引用[2]建议驱动535和CUDA 12.3,但用户需要12.4,可能需要驱动550。不过需要确认驱动550是否支持Ada架构。可能引用[2]中Hopper的配置同样适用于Ada,或者需要查看NVIDIA官方文档确认。 可能的问题:驱动版本和CUDA版本的兼容性,以及NCCL与CUDA的匹配。需要确保三者版本一致。此外,安装方式(runfile或deb)的不同可能导致路径问题,需要注意环境变量设置。 最后,生成相关问题,涉及CUDA版本差异、NCCL多GPU配置、驱动兼容性排查等。</think>### 分步安装指南 #### 一、系统环境准备 1. **更新系统包** ```bash sudo apt update && sudo apt upgrade -y ``` 2. **安装编译依赖项** ```bash sudo apt install build-essential gcc-multilib dkms gcc g++ make linux-headers-$(uname -r) -y ``` 这些工具用于内核模块编译和驱动安装[^3]。 --- #### 二、安装NVIDIA驱动550 1. **添加官方驱动仓库** ```bash sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt update ``` 2. **安装驱动550** ```bash sudo apt install nvidia-driver-550 -y ``` 重启后验证: ```bash nvidia-smi # 应显示Driver Version: 550.x ``` --- #### 三、安装CUDA 12.4 1. **下载CUDA 12.4安装包** 从[NVIDIA官网](https://developer.nvidia.com/cuda-toolkit-archive)选择: ```bash wget https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run ``` 2. **执行安装** ```bash sudo sh cuda_12.4.0_550.54.14_linux.run ``` *取消勾选驱动安装(已单独安装)* 3. **配置环境变量** 在`~/.bashrc`末尾添加: ```bash export PATH=/usr/local/cuda-12.4/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-12.4/lib64:$LD_LIBRARY_PATH ``` 生效配置: ```bash source ~/.bashrc ``` 4. **验证安装** ```bash nvcc --version # 应显示release 12.4 ``` --- #### 四、安装NCCL库 1. **下载NCCL 2.19.3(适配CUDA 12.4)** ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/nccl-local-repo-ubuntu2204-2.19.3-cuda12.4_1.0-1_amd64.deb ``` 2. **安装与验证** ```bash sudo dpkg -i nccl-local-repo-ubuntu2204-2.19.3-cuda12.4_1.0-1_amd64.deb sudo apt update sudo apt install libnccl2 libnccl-dev -y ``` --- #### 五、兼容性说明 1. **架构支持** - RTX 4060 Mobile(Ada Lovelace架构)支持CUDA 12.4的FP32/FP16运算加速[^2] - 需确保`nvidia-smi`显示的驱动版本≥550 2. **版本匹配** CUDA 12.4要求NCCL≥2.19.x,否则会出现`libnccl.so`不兼容错误 --- #### 六、测试多GPU通信 ```bash git clone https://github.com/NVIDIA/nccl-tests.git cd nccl-tests make ./build/all_reduce_perf -b 8 -e 256M -f 2 -g 2 # 测试双卡带宽 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值