使用Hugging Face的Pytorch版本BERT模型进行Fine-tune实现文本分类
Hugging Face确实可以让BERT变得很容易使用,这里介绍一下如何使用Hugging Face的Pytorch版本BERT模型进行Fine-tune实现文本分类。
Tokenize
首先,我们需要看看如何对中文预料进行Tokenize的操作。废话不说,这里直接上代码。
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
batch_sentences = [
"我在广州",
"今天天气很好",
"今天是2022年9月23日",
]
encoded_input = tokenizer(batch_sentences,
padding="max_length",
truncation=True,
max_length=20)
print(encoded_input)
这里直接使用了,transformers下面的AutoTokenizer,使用bert-base-chinese来编码,输出的结果如下。
可以看到,这里定义了max_seq_length=20,不足加padding,超过自动截断,头尾加入101,102代表截断。
Decode
decode是Tokenize的反操作,这里对第一句编码进行decode操作。
data = tokenizer.decode(encoded_input["input_ids"][0])
print(data)
得出来在前后添加了开始和结束符号,和PAD
构建并训练模型
我们这里是用了THUCNews数据集,打开网页下载THUCNews.zip文件即可,里面一共有10个类别,这里只使用了2类,为了加快训练速度,分别用了体育和娱乐。所以定义model时候,需要指明文本类别数。
AutoModelForSequenceClassification.from_pretrained(“bert-base-chinese”, num_labels=2)
构建和训练模型的代码如下面所示:
import torch
from torch.utils.data import DataLoader
from tqdm