《Network In Network》翻译

本文提出新深度网络结构Network in Network(NIN),以增强模型对局部图像块辨别能力。它用多层感知器构建微型神经网络提取数据,通过滑动微网络获得特征映射。可堆叠结构实现深度NIN,利用全局平均池,不易过拟合,在多个数据集上有良好性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Network In NetworkNetwork\ _{}In\ _{}NetworkNetwork In Network

Min Lin,  Qiang Chen,  Shuicheng Yan Min\ _{}Lin,\ _{}\ _{} Qiang\ _{}Chen, \ _{}\ _{}Shuicheng\ _{}YanMin Lin,  Qiang Chen,  Shuicheng Yan

网络中的网络 网络中的网络

  摘要:我们提出了一种新的深度网络结构,称为“Network in Network”(NIN),以增强模型对感受野中局部图像块的辨别能力。传统的卷积层使用线性滤波器,然后使用非线性激活函数来扫描输入。取而代之的是,我们建立了具有更复杂结构的微型神经网络,以提取感受野内的数据。我们用多层感知器来实例化微型神经网络,这是一种有效的函数逼近器。特征映射是通过以类似于CNN的方式在输入上滑动微网络来获得的;然后它们被喂到下一层。可以通过堆叠多个上述结构来实现深度NIN。通过微网络增强局部建模,我们能够利用分类层中特征映射的全局平均池,这比传统的全连接层更容易解释并且不容易过拟合。我们展示了NIN在CIFAR-10和CIFAR-100上的最新分类性能,以及在SVHN和MNIST数据集上的合理性能。

在这里插入图片描述

图1 线性卷积层和mlpconv层的比较。线性卷积层包含线性滤波器,而mlpconv层包含微网络(在本文中我们选择多层感知器)。两层都将局部感受野映射到潜在概念的置信度值。

在这里插入图片描述

图2 Network In Network的总体结构。在本文中,NIN包括三个mlpconv层的堆叠和一个全局平均池层的堆叠。
### Mapping Network 概念 Mapping Network 是一种用于将输入特征转换为目标空间表示的神经网络结构。这种类型的网络广泛应用于各种深度学习任务中,特别是在生成对抗网络(GANs)、风格迁移以及序列到序列(Seq2Seq)建模等领域。 在不同的应用场景下,mapping network 可能具有不同的设计和功能: - **在 GAN 中的作用**:作为 StyleGAN 架构的一部分,mapping network 接收随机噪声向量 z 并将其映射为中间潜在变量 w 或者更高维度的空间 W+ 。这一过程有助于提高生成图像的质量并增强模型稳定性[^2]。 - **在 Seq2Seq 模型中的角色**:对于翻译或其他自然语言处理任务而言,seq2seq 结构通常会包含编码器-解码器框架加上 attention mechanism 来捕捉源句与目标句之间的依赖关系;而 mapping network 则负责建立从源端语义表征到目的端表达形式之间更深层次联系[^1]。 ### 工作原理详解 #### 输入预处理阶段 给定原始数据集 X={x_1,x_2,...,x_n} ,其中每一个样本 x_i 都属于某个特定域 A (比如图片、文本)。为了使这些实例能够被有效地传递至后续组件,在进入 mapping network 之前往往需要经过一系列标准化操作,如归一化数值范围、去除异常值等。 #### 特征提取部分 此环节旨在利用卷积层(Convolutional Layers)或循环单元(Recurrent Units),依据具体问题选取合适的激活函数来挖掘隐藏模式,并构建高层次抽象描述 y=f(x;θ_m) ,这里 f 表示由多个全连接层(Dense Layers)堆叠而成的学习机制,θ_m 代表待优化参数集合。 ```python import tensorflow as tf def create_mapping_network(input_shape=(None,), hidden_units=[512]*8, activation='relu'): inputs = tf.keras.Input(shape=input_shape) features = inputs for units in hidden_units[:-1]: features = tf.keras.layers.Dense(units=units, activation=activation)(features) outputs = tf.keras.layers.Dense(units=hidden_units[-1])(features) return tf.keras.Model(inputs=inputs, outputs=outputs) ``` #### 输出变换步骤 最终得到的结果会被进一步调整以适应下游任务需求。例如,在 style transfer 场景里可能会应用非线性投影(nonlinear projection)使得输出更加贴近真实分布特性;而在 seq2seq 设置下则可能涉及到 softmax 函数计算概率分布 p(y|x)=softmax(g(w)) 以便于采样最有可能的目标序列。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值