自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1634)
  • 收藏
  • 关注

原创 程序员开发爆款应用的机会来了!

当前,AI大模型技术正推动各行业智能化转型。该教程通过"应用-开发-算法"三位一体的学习路径,帮助学习者系统掌握大模型核心技能。从工具使用到模型调优,七天集训聚焦真实业务场景的解决方案,完成从理论到实战的能力跨越。把握技术变革窗口期,这场高效学习将为你打开AI工程师的职业通道,赋能未来技术生涯的持续发展。

2025-07-26 23:17:41 499

原创 字节跳动 Coze 扣子刚刚开源了。

当前,AI大模型技术正推动各行业智能化转型。该教程通过"应用-开发-算法"三位一体的学习路径,帮助学习者系统掌握大模型核心技能。从工具使用到模型调优,七天集训聚焦真实业务场景的解决方案,完成从理论到实战的能力跨越。把握技术变革窗口期,这场高效学习将为你打开AI工程师的职业通道,赋能未来技术生涯的持续发展。

2025-07-26 23:16:48 578

原创 2025年有多少程序员转行了?

当前,AI大模型技术正推动各行业智能化转型。该教程通过"应用-开发-算法"三位一体的学习路径,帮助学习者系统掌握大模型核心技能。从工具使用到模型调优,七天集训聚焦真实业务场景的解决方案,完成从理论到实战的能力跨越。把握技术变革窗口期,这场高效学习将为你打开AI工程师的职业通道,赋能未来技术生涯的持续发展。

2025-07-25 21:34:26 1079

原创 RuoYi-Vue项目 重点代码讲解

当前,AI大模型技术正推动各行业智能化转型。该教程通过"应用-开发-算法"三位一体的学习路径,帮助学习者系统掌握大模型核心技能。从工具使用到模型调优,七天集训聚焦真实业务场景的解决方案,完成从理论到实战的能力跨越。把握技术变革窗口期,这场高效学习将为你打开AI工程师的职业通道,赋能未来技术生涯的持续发展。

2025-07-24 22:05:32 848

原创 微软推出初学者的最佳 AI Agent 课程

当前,AI大模型技术正推动各行业智能化转型。该教程通过"应用-开发-算法"三位一体的学习路径,帮助学习者系统掌握大模型核心技能。从工具使用到模型调优,七天集训聚焦真实业务场景的解决方案,完成从理论到实战的能力跨越。把握技术变革窗口期,这场高效学习将为你打开AI工程师的职业通道,赋能未来技术生涯的持续发展。

2025-07-24 22:04:21 949

原创 大厂业务大模型微调实录

当前,AI大模型技术正推动各行业智能化转型。该教程通过"应用-开发-算法"三位一体的学习路径,帮助学习者系统掌握大模型核心技能。从工具使用到模型调优,七天集训聚焦真实业务场景的解决方案,完成从理论到实战的能力跨越。把握技术变革窗口期,这场高效学习将为你打开AI工程师的职业通道,赋能未来技术生涯的持续发展。

2025-07-23 22:01:02 973

原创 程序员如何转行到ai大模型领域?

当前,AI大模型技术正推动各行业智能化转型。该教程通过"应用-开发-算法"三位一体的学习路径,帮助学习者系统掌握大模型核心技能。从工具使用到模型调优,七天集训聚焦真实业务场景的解决方案,完成从理论到实战的能力跨越。把握技术变革窗口期,这场高效学习将为你打开AI工程师的职业通道,赋能未来技术生涯的持续发展。

2025-07-23 21:57:23 1070

原创 如何系统的入门大模型?

当前,AI大模型技术正推动各行业智能化转型。该教程通过"应用-开发-算法"三位一体的学习路径,帮助学习者系统掌握大模型核心技能。从工具使用到模型调优,七天集训聚焦真实业务场景的解决方案,完成从理论到实战的能力跨越。把握技术变革窗口期,这场高效学习将为你打开AI工程师的职业通道,赋能未来技术生涯的持续发展。

2025-07-23 21:53:06 646

原创 程序员转行能做什么工作?不用焦虑了!

程序员的职业生涯不应局限于编码。面对行业的变革,我们应该勇敢地迈出转型的步伐,探索更广阔的职业天地。程序员们,你们是否准备好迎接新的挑战?让我们一起拥抱变化,重塑职业生涯,去迎接新的职场生活吧!

2025-07-22 18:32:44 1266

原创 前端程序员转行大模型岗:全面攻略,非常详细收藏我这一篇就够了

随着人工智能技术的快速发展,尤其是大规模语言模型(如GPT-3、BERT等)在自然语言处理领域的广泛应用,越来越多的技术人才开始考虑向这一前沿领域转型。对于那些拥有前端开发背景的专业人士来说,虽然两者看似领域不同,但实际上从Web应用到AI模型之间的跨越并非遥不可及。本文将为希望从传统前端工程师角色转变为专注于大模型研究与开发岗位的朋友提供一份详尽的职业转换指南。一、了解基础知识线性代数:理解矩阵运算对于理解和实现神经网络至关重要。概率论与统计学:用于处理不确定性问题,是机器学习算法设计的基础之一。

2025-07-22 18:21:42 681

原创 计算机就业前景较好的五个专业,毕业后容易拿高薪,有你学的吗?

随着科技的不断发展,计算机类专业在现代社会中越来越受到重视。这类专业不仅具有广泛的应用前景,而且在薪资待遇方面也相对较高。本文将为大家详细介绍计算机类就业前景好的五个专业,包括它们的学习难度、基本课程、未来发展前景以及毕业生薪资水平等方面。下面跟着小编一起来看看都有哪些专业吧。

2025-07-21 21:40:16 844

原创 大模型推理工程师需要哪些技能?零基础入门到精通,收藏这一篇就够了

大模型推理工程师是一个技术密集型的职位,他们需要掌握一系列的技能和知识来应对复杂的模型推理任务。以下是一些关键技能:编程语言和工具:熟练掌握Python、C++等编程语言,并熟悉使用相关的工具和技术栈,如TensorFlow、PyTorch等深度学习框架。这些工具和框架是进行大模型训练和推理的基础。深度学习原理:深入理解深度学习的基本原理,包括深度神经网络的架构、常见的激活函数、优化算法、正则化技术等。掌握这些原理有助于更好地进行模型的设计、训练和推理优化。

2025-07-21 21:38:30 697

原创 国内大厂疯抢大模型人才,大模型人才的春天来了吗?

绝对不要怀疑国内大厂对于人才的投入力度,几乎所有的互联网大厂都有这种对于高端人才的招聘计划,特点就是「高薪」+「高要求」。你看腾讯的青云计划提到的,它的目标是面向全球,给高薪、给定制化的培养、做核心业务、目标是解决前沿问题,可以理解这是一个更偏向研究型的工作岗位。![外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传](https://img-home.csdnimg.cn/images/20230724024159.png?

2025-07-21 21:00:03 802

原创 【AI Agent基础教学】《Agents》——Google智能体白皮书

从最基本的角度来看,生成式AI智能体是一种应用程序,它通过观察周围环境并运用各种可用工具来实现既定目标。智能体具有自主性,尤其是在明确目标后,能够独立于人类干预开展行动。在目标实现过程中,智能体表现出主动性特征。它能够自主推理下一步行动方案,即使没有人类的具体指令。虽然AI领域中智能体的概念已较为成熟且应用广泛,本白皮书将重点关注当前生成式AI模型能够构建的特定类型智能体。为了深入理解智能体的运作机制,首先需要了解驱动其行为行动和决策的基础组件。

2025-07-21 20:56:38 637

原创 为什么说程序员不断的提高自己的技术有可能是一种误区?

技术是手段,价值是目标。程序员的价值不仅仅体现在技术能力上,更体现在能够用技术解决实际问题、创造商业价值、服务用户需求的能力上。单纯追求技术提升确实是一种误区,因为它忽视了技术的最终目的:创造价值。但这不意味着技术能力不重要,而是说技术能力需要与其他能力结合,才能发挥最大价值。我希望每个程序员都能够跳出技术提升的误区,建立更全面、更系统的职业发展观念。不要只做一个"技术工人",而要成为一个能够用技术创造价值的"技术专家"。程序员的职业发展之路有很多条,技术能力只是其中一个维度。

2025-07-18 21:14:15 668

原创 Python 包管理工具 UV 功能介绍及安装

pip install uv 是用于安装 UV(一个高性能 Python 包管理工具)的命令。4.其他安装方式:使用官方脚本(支持 Linux/macOS/Windows):5.通过 pipx 安装(适合全局工具管理):7.虚拟环境管理:快速创建和激活虚拟环境:uv venv myenv # 创建虚拟环境source myenv/bin/activate # 激活(Linux/macOS)8.依赖锁定:生成 uv.lock 文件确保环境一致性:uv lock。

2025-07-18 21:12:21 577

原创 uv 实用指南速览:简化 Python 项目依赖管理与虚拟环境配置,告别 pipenv 与 poetry?

uv是 Python 包管理领域令人兴奋的新进展。它以 Rust 带来的极致速度为核心优势,旨在成为pipvenv和pip-tools的高性能替代品。通过支持标准的文件和类似于pip-tools的编译 / 同步工作流,uv提供了一条平滑的迁移路径,让开发者能够轻松地获得更快的环境管理和依赖处理体验。如果你厌倦了等待pip解析和安装依赖,或者希望在你的 CI/CD 流程中大幅缩短构建时间,那么uv绝对值得你尝试。开始使用uv venv和,体验一下 “瞬间” 完成依赖安装的快感吧!,但一些依赖于特定pip。

2025-07-18 21:09:44 712

原创 拥抱未来:下一代 Python 打包工具 uv 使用指南

uv是一个用Rust编写的、速度极快的Python包和项目管理器。它由Ruff(一个广受欢迎的)的创建者Astral公司开发。uv的设计目标是成为pippip-toolsvenv和virtualenv的直接替代品,并提供一个统一、快速且易于使用的工具链。选择 uv 的理由和突出亮点:这是uv最引人注目的特点。得益于Rust的高性能和先进的依赖解析算法,uv的包安装和解析速度比pip和conda快10-100倍。对于大型项目或在CI/CD环境中,这将极大地缩短等待时间。uv。

2025-07-18 21:07:50 658

原创 为什么成千上万的 Python 开发人员正在转向 UV

如果您是一名 Python 开发人员,需要同时使用 pip、虚拟环境、pip-tools 和 pipx,那么市面上有一款新工具可以简化您的工作流程,并彻底改变您管理 Python 环境的方式,那就是 Astral 的UV 不仅仅是一个包管理器。它是一个且功能强大的 pip、venv、pip-tools 和 pipx 的替代品,采用 Rust 语言全新,以实现最佳性能。我最近将我的许多项目迁移到了 UV,它简化了流程,给我留下了深刻的印象。

2025-07-18 21:06:27 1022

原创 程序员明明是技术积累岗位,为什么年龄越大反而可替代性变高了?

这个问题很多人不愿意说透,不是技术不重要了,而是整个行业对“技术价值”的理解变了。年轻程序员拼的是体力、学习速度和执行能力,中年程序员拼的是和。从表面上来看,后者要更有价值,但在实际的企业运作中,后者的价值往往是难以量化,也很难快速变现。尤其是在这种追求和的行业里,老板们更愿意用一个能快速上线、成本低的人,而不是一个经验深但贵又慢的人。对于程序员来说,技术积累确实有用,但它发挥作用的前提是你必须在一个稳定、长期投入的系统里。

2025-07-17 22:22:44 762

原创 2025年产品经理未来的机遇在哪里?这里有答案

在互联网行业发展的浪潮中,我们见证了它的崛起与辉煌,也目睹了如今趋于平稳的发展态势。随着市场逐渐饱和,企业对人才的要求不再局限于基础技能,而是转向了对专业度和实战能力的高要求。面对这样的挑战,如何破局成为每个职场人必须思考的问题。

2025-07-17 22:21:41 1277

原创 【产品经理心理篇】产品经理已经不香了么?就这么不受待见么?

最近在各大网站上看到大家都在提产品经理饱和了、入行门槛低、工作不好找、闭坑什么的。作为一个在to B/to G混了多年的产品经理,心中还是觉得有些不是滋味。产品经理这个职位在不同的情境下有着复杂的形象。一方面,产品经理作为连接用户、技术团队和业务的重要桥梁,其角色对于推动产品从概念到市场的过程中至关重要。他们需要具备多方面的能力,包括但不限于市场分析、用户洞察、产品规划、需求管理、项目协调等,对于产品的成功有着直接影响。

2025-07-17 22:16:34 822

原创 AI 时代通信产品经理的转型升阶之路

在 AI 技术迅猛发展的当下,通信行业正迎来前所未有的变革浪潮,通信产品经理作为行业发展的关键推动者,面临着全新的机遇与挑战,亟需实现转型升阶,以适应时代发展需求。

2025-07-17 22:14:20 1015

原创 【万字长文】深入浅出 LlamaIndex 和 LangChain:从RAG到智能体,轻松驾驭LLM应用开发_llamaindex langchain

大语言模型 (LLM) 的兴起无疑是人工智能领域的一场革命。它们拥有强大的知识生成和推理能力,通常基于海量的公开数据进行预训练。然而,一个核心挑战随之而来:如何有效地利用我们自己的私有数据或特定领域数据来增强这些通用模型的能力?直接对 LLM 进行微调不仅成本高昂、耗时,而且模型内部知识的时效性也受限于其训练数据。为应对这一挑战,LLM 应用开发框架应运而生,其中 LlamaIndex 和 LangChain 是两个备受瞩目的领先者。它们如同桥梁,旨在简化构建由 LLM 驱动的应用程序的过程。

2025-07-17 22:10:01 728

原创 AI概念解析:从入门到精通的36个关键术语指南

随着AI的普及和快速发展,越来越多的人开始关注AI,但是深奥晦涩的专业术语,让很多人望而却步,甚至对于人们应用AI产生了一定困难。因此,社区决定对AI领域的热点概念和专业术语进行解读,并配备相应图表以便于大家更形象的理解。我们将从七大方面进行深度解读,方便大家能够更好的进入该领域学习和应用。人工智能(AI)是计算机科学(CS)的一个分支,主要目的是设计开发能够执行人类智能才能完成的任务系统。这些系统能够感知环境变化、处理数据、学习规律、做出决策并解决问题。

2025-07-16 18:57:13 1011

原创 一文搞懂:AI Agent 八大核心概念

图片来源:百度所谓智能体,指的是能独立采取行动以实现特定目标的 AI 实体。想象你有一个贴心的小跟班,你让他干啥他就干啥。比如你让他查明天的天气,他立马就给你整得明明白白。举个栗子,AI 面试官就是一个很棒的智能体。它能够根据招聘要求,自主给候选人发送试邀请,然后自主进行视频面试,再自主进行面试评价,自主发送 offer。最后把招聘的统计报告发送给你。是不是超省心?当然了,智能体也存在很多缺陷,特别是在对准确性要求很高的场景,完全自主的智能体还存在明显的幻觉问题。

2025-07-16 18:56:12 619

原创 模型上下文协议 (MCP)是什么?Model Context Protocol 需要你了解一下_mcp协议

在人工智能领域,Model Context Protocol(MCP)正逐渐成为连接AI模型与各类数据源及工具的重要标准。MCP究竟为何物?它又将如何改变AI应用的开发与使用?

2025-07-16 18:55:37 919

原创 如何搭建专业AI营销口播文案智能体?(零基础AI智能体搭建教学)

每次写营销口播文案,是不是感觉脑细胞都死了一大片,还是憋不出几个好文案?正好最近千帆应用开发平台AppBuilder全面接入DeepSeek-R1-0528新模型以及RAG知识库能力进行了增强,今天我就带大家零基础结合上新功能搞定一个专业AI营销口播文案智能体,全程不用写一行代码,就算完全没基础也能轻松上手!

2025-07-16 18:23:36 927

原创 看懂这8个概念,你也是半个AI行业人!

哈喽大家好!这里是海文这些天突发奇想,想专门做一个文章合集,不定期更新,专门科普一些AI相关的概念/知识,将它们讲细讲透,争取让大家都能够看得懂,理解其中的含义。所以今天是AI科普系列——“半个圈内人”的第一篇文章,以下内容我将为大家详细且生动地讲解既然是生成式人工智能,就牵扯到用人工智能生成什么内容才算是生成式人工智能。答案很简单:用人工智能生成什么内容都算是生成式人工智能(呃…有点搞笑的表达…就稍微有点)。

2025-07-16 18:22:54 633

原创 手把手教你从0搭建一个智能体,全部跟下来你就Agent入门了!(超详细的讲解)

这里先用一小段篇幅带大家快速了解下Coze并进入到指定操作界面。Coze 是字节跳动推出的零代码或低代码智能体开发平台,基于其大模型技术,提供插件系统、长短期记忆、工作流编排等核心能力,支持多模态交互(文本/语音/图像)与多平台发布(如豆包、飞书、Discord),专注构建个人助理、电商客服、内容生成等场景的智能体应用。**Coze网址:**

2025-07-16 18:21:27 635

原创 从零开始构建大模型:GitHub超44K Star的大模型教程

MCP 和 Agent2Agent 很火,Prompt 和 RAG 很强,但掌握 LLM 的底层逻辑,才是技术人最根本的护城河。如果你想真正走进大模型的内部世界,不再止步于“使用者”,而是成为一位“建造者”,这本书,就是你迈出第一步的最佳起点。,Prompt 和 RAG 很强,但掌握 LLM 的底层逻辑,才是技术人最根本的护城河。如果你想真正走进大模型的内部世界,不再止步于“使用者”,而是成为一位“建造者”,这本书,就是你迈出第一步的最佳起点。一书在手,从此心中无惧模型黑箱。

2025-07-16 18:20:37 839

原创 《大模型应用开发环境搭建-项目实战》

复杂的python环境是不是让你望而却步,梳理近十年python构建环境的发展以及安装方法**,帮助你快速入坑大模型应用开发;同时还有实战可二开落地项目** 还不快来试试.在过去十年中,Python的包管理工具经历了从简单到复杂、功能逐渐丰富的演变。最初,开发者主要依靠pip和virtualenv来处理依赖和创建隔离环境。随着需求的增长,conda出现,提供了更强大的跨语言依赖管理和环境控制,尤其在数据科学领域得到广泛应用。近年来,Poetry/UV等新一代工具崛起,它借鉴了。

2025-07-16 18:19:58 621

原创 大模型学习笔记(四) 更好的LLM:微调、提示词工程与对齐

追本溯源的说,相较于finetuning,prompt-tuning是更符合人类学习知识、完成任务的习惯的,人类在完成任务的时候并不需要如此大规模的数据来支撑,我们可以通过比较简短的指示,类比、匹配不同的任务融会贯通的学习。一种可能的方法是让该矩阵遵循以下分解:Ml=BlAl其中B和A的规模如下图所示,这样的设计首先保证了M的维度仍然是d*k不变,但通过子维度r的添加,实现了对A和B的秩的限制,从而控制M的秩在设计好的r之下,如下图右侧的两个梯形短边的长度r,就是通过r的设计实现的对M的秩的控制。

2025-07-15 18:47:29 326

原创 Deepseek与法律专业大模型深度拆解——基于案例检索总结应用场景_法律大模型

本期,我们从另一个法律应用场景来考察一下通用大模型和法律大模型的表现。

2025-07-15 18:46:17 378

原创 601个真实案例大揭秘!大模型应用落地实践全解析,记得收藏!_大模型应用 实践

在AI迅猛发展的今天,越来越多的全球知名企业、政府机构、科研单位和初创公司,正在通过 Google 的AI技术提升工作效率与服务水平。举几个例子:• 快餐品牌如 Wendy’s 和 Papa John’s 利用 AI 工具提升点单效率;• Uber 借助预测式AI优化了应用内订单处理;• 梅赛德斯-奔驰和通用汽车通过 AI 提升车内语音助手的交互体验;• 三星将AI集成进新一代手机与家庭机器人 Ballie,让设备响应更加智能;• 银行如花旗和德银用AI提升市场监控能力和反欺诈手段。

2025-07-15 18:45:44 375

原创 法律大模型(ChatLaw)

ChatLaw是一个法律领域的大模型产品,不仅仅是一个模型,而是具有较好产品形态的法律领域应用。由北大团队发布的中文法律大模型项目官网:https://www.chatlaw.cloud/。其主要目的是为普通人提供普惠的法律服务。ChatLawtext2vec版本使用93万条判决案例做成的向量数据集,基于bert训练的相似度匹配模型,能够根据用户提问的内容检索到最相关的法律条文。1.智能法律咨询:用户可以通过简单的对话向ChatLaw提问,获得较为专业的法律建议。

2025-07-15 18:42:29 1086

原创 “学历通胀”是世界级现象,能持续多久?

长期以来,发达国家将大学教育视为唯一的成功途径,职业技术教育被视为"低人一等"的选择。而现在这样的问题也同样出现在发展中国家。结果是,大量年轻人涌入大学,而技术工种却后继无人。当这些大学毕业生发现就业困难时,却又不愿意"屈就"技术工作,形成了高级人才找不到工作、技术岗位找不到人才的尴尬局面。更重要的是,AI的发展反而增加了对技术工人的需求。随着工厂和企业大量采用智能设备,需要更多技术人员来安装、维护和修理这些复杂系统,形成AI难以替代的核心能力。

2025-07-14 19:40:59 496

原创 99%的程序员都会失业吗?丨AI原生研究系列之AI Coding

又到一年高考季,因为这几年一直在研究大模型,有好几个家长朋友都来咨询,要不要给自己孩子报考计算机专业?接到这个问题,面对“周更”、甚至“日更”的大模型浪潮,着实难给出一个准确的回答,只能说:编程作为一种抽象和拆解问题的方法论依旧重要,但写代码这件事正被重新定义——自然语言正快速变成新的最高级的编程语言。。Karpathy提出了vibe coding(氛围编程)的趋势,这也意味着用户可能会忘记代码的存在。其最新的关于软件3.0时代的演讲,揭示了软件开发正在经历1940年软件1.0以来最深刻的范式转移。

2025-07-14 19:39:19 338

原创 2025年程序员,彻底失业!AI 让前端成绝响?码农何去何从

这不是危言耸听,而是数据的铁证。看看 FRED(美国经济数据平台)的最新统计数据:• 软件开发相关的招聘需求,在 2022年达到顶峰,随后出现断崖式暴跌。• 进入 2023年后,招聘需求几乎减半,到 2024年已回落到2020年疫情初期的水平,甚至更低。• 目前来看,招聘需求的下降趋势仍在继续,并未见底。这说明什么?程序员不再是香饽饽,尤其是前端工程师,企业对招聘前端的需求已经几乎消失!你还在学 React、Vue、Angular?你还在研究 Next.js、Nuxt.js、Svelte?

2025-07-14 19:38:27 1250

原创 初学者怎么入门大语言模型(LLM)?

最近发现一个非常好的学习资料,可以一次性的掌握从理论到从头创建一个大模型,再到预训练,SFT(有监督微调),甚至到最后还有RAG以及Agent的搭建方式,非常的齐全。就是这个Happy-LLM,Github将近10000星了,上升势头非常快。由于下个学期可能需要讲一些类似的内容,所以自己过了一遍,教程一共有7章,我把它分成了三个部分:1-4理论部分, 5-6大模型创建和训练实践,7大模型扩展应用。所以总结下,要搞科研的,2,3,5必看,可以深入到算法层次;长见识的第四章看完足够了;

2025-07-12 17:15:09 880 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除