三维点云课程(五)——深度学习

本文介绍了深度学习的基础,包括神经网络、损失函数和激活函数。重点探讨了卷积神经网络(CNN),阐述了一维和二维卷积的优势,如权重共享和参数稀疏性。在点云处理方面,讨论了三维卷积的挑战及解决方案,如投影到二维卷积和使用MLP。PointNet和PointNet++作为点云处理的关键技术,因其旋转不变性而受到关注,特别是PointNet++通过多层特征提取和降采样克服了PointNet的局限性。点云处理中涉及的关键步骤包括标准化和旋转增强。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、深度学习概述

深度学习过程就是优化一个函数 

1.1 神经网络结构

1.2 loss函数

线性损失函数

交叉熵用作分类

1.3 激活函数

二、卷积神经网络 

 

2.1 一维卷积 

2.1.1 卷积的好处 

  1. 卷积是稀疏的,更少的参数
  2. 卷积的权重可以共享
  3. 感知域一样,输出一样,两只狗的照片全连接很难输出一样

2.1.2 padding

为了卷积边缘,加0

2.1.3 Stride 

使计算步骤更少,感知域更大 

2.2 二维卷积 

2.2.1 二维Padding

2.2.2 卷积核

不同卷积核用于提取不同的特征

多个卷积核,多个卷积层叠加 

 2.2.3 Pooling 池化

一个简化版的卷积,取区域内的最大值

三、深度学习在点云的应用

 3.1 三维卷积

1.三维网格 2.三维卷积 3.展开

缺点:分辨率降低,计算量过大。

3.2 投影到二维卷积

每个方向都投影,计算量大。

3.3 MLP

把点的坐标累成一个向量,再用MLP(全连接)处理向量

直接把每个点的坐标传入神经元,但顺序变化导致了结果不同。

3.4 PointNet

考虑到点云的旋转不变性,需要函数满足以下特征 

Core Idea之前是独立的,经过max pool把所有点联系到一块,每一列取最大值,不受点云旋转的影响。

Shared MPL + Max Pool = PointNet

 PointNet能拟合任何函数的表达

被选中的点叫做Critical Points Set

缺点:缺少逐层的信息提取,直接将所有点云转成一列,所以提出PointNet++

3.5 PointNet++

3.5.1 原理

实现了多层的特征提取

 对点云逐层运用RNN最邻近收缩进行均匀降采样,加上上一层的特征传入PointNet

为不受坐标的影响,需要有Normalize步骤减去中心位置,以不受绝对距离的影响。一个人在1m和在20m都是一个人。

 3.5.2 Pointnet++改进

1、Multi-scale grouping:不同的搜索半径结合成一个向量

2、Multi-resolution grouping:多层特征点一起组成一个特征向量

 3.5.3 点云语义分割

 点由很少的点再次恢复多的点

 PointNet++主要模拟CNN做了多层的特征提取

点云需要Normalization的预处理步骤标准化到sample的中心

在训练时需要对点云做旋转来

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

桦树无泪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值