01背包问题详解 (P1048 [NOIP2005 普及组] 采药 题解)

目录

一、做题方法

        1.枚举法

        2.动态规划

                普通写法

                空间优化

                第一种方法

                第二种方法

                常数优化

                优化

 二、AC代码


题目描述

辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”

如果你是辰辰,你能完成这个任务吗?

输入格式

第一行有 2 个整数 T(1≤T≤1000)和 M(1≤M≤100),用一个空格隔开,T 代表总共能够用来采药的时间,M 代表山洞里的草药的数目。

接下来的 M 行每行包括两个在 1 到 100 之间(包括 1 和 100)的整数,分别表示采摘某株草药的时间和这株草药的价值。

输出格式

输出在规定的时间内可以采到的草药的最大总价值。

输入输出样例

输入 #1

70 3
71 100
69 1
1 2

输出 #1

3

说明/提示

【数据范围】

  • 对于 30% 的数据,M≤10;
  • 对于全部的数据,M≤100。

【题目来源】

NOIP 2005 普及组第三题

一、做题方法

        这道题一看就是一道01背包的问题。我们可以先看看为什么要用01背包。(如果知道的话可以跳过)

        1.枚举法

                我们用0和1来表示一株草药采或不采(0为不采,1为采)。我们枚举所有的串,对每个串,我们看看它的总时间是不是小于等于T,再从所有总时间小于等于T的方案中,选出总价值最大的就可以啦。

                But,太慢了!

           \frac{1}{2}.贪心?

                可能有些人在刚刚看到这道题的时候第一反应觉得这是道贪心题,但是细一看就能找到反例。比如,采药时间是100,有三株草药,时间分别是51,50,50,价值分别是55,50,50。用贪心思想,第1株草药性价比高,先采第1株。可是一旦选了第1株草药,时间就只剩下了45,不够采第2、3株草药了。如果不采第1株,选看起来不如第1株草药的第2、3株,总时间正好100,这时总价值100,比55多多了。贪心策略无效。

        2.动态规划

                普通写法

                如果我们现在有了两种采法,总时间一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值