目录
题目描述
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?
输入格式
第一行有 2 个整数 T(1≤T≤1000)和 M(1≤M≤100),用一个空格隔开,T 代表总共能够用来采药的时间,M 代表山洞里的草药的数目。
接下来的 M 行每行包括两个在 1 到 100 之间(包括 1 和 100)的整数,分别表示采摘某株草药的时间和这株草药的价值。
输出格式
输出在规定的时间内可以采到的草药的最大总价值。
输入输出样例
输入 #1
70 3 71 100 69 1 1 2
输出 #1
3
说明/提示
【数据范围】
- 对于 30% 的数据,M≤10;
- 对于全部的数据,M≤100。
【题目来源】
NOIP 2005 普及组第三题
一、做题方法
这道题一看就是一道01背包的问题。我们可以先看看为什么要用01背包。(如果知道的话可以跳过)
1.枚举法
我们用0和1来表示一株草药采或不采(0为不采,1为采)。我们枚举所有的串,对每个串,我们看看它的总时间是不是小于等于T,再从所有总时间小于等于T的方案中,选出总价值最大的就可以啦。
But,太慢了!
1 .贪心?
可能有些人在刚刚看到这道题的时候第一反应觉得这是道贪心题,但是细一看就能找到反例。比如,采药时间是100,有三株草药,时间分别是51,50,50,价值分别是55,50,50。用贪心思想,第1株草药性价比高,先采第1株。可是一旦选了第1株草药,时间就只剩下了45,不够采第2、3株草药了。如果不采第1株,选看起来不如第1株草药的第2、3株,总时间正好100,这时总价值100,比55多多了。贪心策略无效。
2.动态规划
普通写法
如果我们现在有了两种采法,总时间一