千万级数据通过sqoop从hive orc分区表导出到mysql的提速经验

本文讲述了如何优化从Hive到MySQL的数据导出过程,通过消除distributeby语句,使得每个分区包含多个文件,从而有效利用sqoop的-m参数提高并行度。原来耗时近2小时的任务,在调整后仅需15分钟,实现了显著的效率提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

数仓算好的数据需要导出到MySQL,但现有的操作流程导出千万级的数据耗时近2小时,2小时的导出速度无法忍耐,且失败成本较高,故急需优化提速。

  • Hive表为orc格式,按月分区,数据每月通过spark任务执行,并且insert 命令后会带上distribute by语句,保证每个月分区内只有一个文件
  • MySQL环境为开发环境,硬件配置极低

思路

正常我们执行sqoop命令导出数据时,都有固有的模板,类似:

sqoop export \
  --connect "${conn_info}" \
  --username ${username} \
  --password ${password} \
  --table ${target_table_name} \
  --hcatalog-database ${from_database_name} \
  --hcatalog-table ${from_table_name} \
  --hcatalog-partition-keys ${partition_key} \
  --hcatalog-partition-values "${partition_value}" \
  --columns "xxx,xxx,xxx,xxx,xxx" \
  --mapreduce-job-name ${your_mr_job_name} \
  -m 1

1.首先想到的方式发增大-m参数的值,想通过增加并行度的方式来提升导出速度,随后我将值改到8执行,但在yarn界面上始终看到只有一个map在跑,也就是说-m参数配置没生效,后来测试了配置为4和2,都只有一个map在运行,导致速度很慢。

2.后来查看了这张hive表的底层存储路径,才发现了问题所在。由于每月跑任务用了distribute by语句,导致最终每个分区只有一个文件,所以当我无脑增大-m的配置时是不会生效的。

实施

想明白以后,我通过spark重新insert overwrite了这张表,并且去掉了distribute by语句,使每个分区分成默认数量个文件,然后重新提交了sqoop命令,并且将-m直接成了20,后来在yarn界面中查看该任务时,发现-m的配置生效了,可以看到20个map任务并行执行。

效果

速度从最开始的120min提速到15min,提速近87.5%。

总结

经验证,sqoop -m值越大,导出越快,同时占用资源越多,根据自身需求取舍就好。

<think>嗯,用户想了解如何使用SqoopHive中的数据导入到MySQL。首先,我需要回顾一下Sqoop的基本用法和导出流程。根据提供的引用,特别是引用[2]、[3]、[4],用户可能需要具体的步骤和示例命令。 首先,用户可能需要确保环境已经配置好,比如Hadoop、HiveMySQLSqoop都可用。然后,Sqoop的export命令是关键。引用[2]和[3]都提到了使用export命令,指定连接参数、表名、导出路径等。需要解释每个参数的作用,比如--connect指定JDBC连接字符串,--username和--password是数据库的凭据,--table是目标表,--export-dir是Hive表在HDFS中的路径。 接下来,用户可能需要知道如何处理不同的数据格式,比如Parquet或ORC。引用[4]提到使用--hcatalog-database和--hcatalog-table来处理ORC格式的表,这比传统的--export-dir方法更方便,特别是对于分区表。需要说明这两种方法的区别和适用场景。 另外,常见问题如字段分隔符、空值处理,引用[2]和[3]中的--input-fields-terminated-by和--input-null-string参数需要解释。还有数据类型不匹配的问题,引用[5]提到NumberFormatException,可能因为MySQLHive数据类型不一致,这时候需要检查表结构,或者暂时用varchar类型来绕过问题。 用户可能还会遇到分区表导出问题,引用[4]的示例中没有提到分区,但如果是分区表,可能需要指定具体的分区路径,或者在Hcatalog参数中处理。此外,性能优化方面,-m参数设置并行度,但要注意MySQL的负载。 需要提醒用户注意Sqoop的版本和MySQL驱动的兼容性,引用[5]提到MySQL 8.0可能有问题,可能需要调整驱动版本或参数。最后,总结步骤,从准备环境、构建命令到验证数据,确保用户能按步骤操作。</think>### Sqoop导出Hive数据MySQL分步教程 #### 一、准备工作 1. 确保Hive数据路径可访问,例如Hive Parquet表存储路径为:`/user/hive/warehouse/<db_name>.db/<table_name>` 2. MySQL中需提前创建目标表结构,字段类型与Hive表对应[^5] #### 二、基础导出命令示例 ```bash sqoop export \ --connect jdbc:mysql://mysql_host:3306/database_name \ --username mysql_user \ --password mysql_password \ --table mysql_table \ --export-dir /user/hive/warehouse/hive_db.db/hive_table \ --input-fields-terminated-by '\001' \ --input-null-string '\\N' \ --input-null-non-string '\\N' \ -m 4 ``` *参数说明:* - `--export-dir`:指定Hive表在HDFS的存储路径[^2] - `--input-fields-terminated-by`:匹配Hive表的字段分隔符(默认`\001`) - `-m`:设置MapReduce任务并行度[^3] #### 三、特殊场景处理 1. **导出ORC格式表** 使用Hcatalog接口避免路径解析问题: ```bash sqoop export \ --connect jdbc:mysql://mysql_host:3306/database_name \ --username mysql_user \ --password mysql_password \ --table mysql_table \ --hcatalog-database hive_db \ --hcatalog-table hive_table \ -m 4 ``` 此方法自动处理分区和存储格式[^4] 2. **处理分区表** 指定具体分区路径: ```bash --export-dir /user/hive/warehouse/hive_db.db/hive_table/partition_col=2023 ``` #### 四、常见问题解决 1. **数据类型不匹配** 出现`NumberFormatException`时,可临时将MySQL字段改为`VARCHAR`类型 2. **中文乱码** 在连接字符串添加编码参数: ```bash jdbc:mysql://host/db?useUnicode=true&characterEncoding=utf-8 ``` 3. **连接超时** 添加连接参数: ```bash -Dmapreduce.map.memory.mb=4096 \ -Dsqoop.mysql.connect.timeout=60000 ``` #### 五、验证导出结果 1. 使用`select count(*) from mysql_table`验证数据量 2. 检查字段值是否包含`\N`(需处理空值情况) 3. 使用`Sqoop eval`快速验证: ```bash sqoop eval --connect jdbc:mysql://host/db \ --query "SELECT * FROM mysql_table LIMIT 5" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值