- ORB SLAM3系统初始化
- ORB SLAM3 构建Frame
- ORB_SLAM3 单目初始化
- ORB_SLAM3 双目匹配
- ORB_SLAM3_IMU预积分理论推导(预积分项)
- ORB_SLAM3_IMU预积分理论推导(噪声分析)
- ORB_SLAM3_IMU预积分理论推导(更新)
- ORB_SLAM3_IMU预积分理论推导(残差)
- ORB_SLAM3_优化方法 Pose优化
- ORB_SLAM3 闭环检测
残差
- 预积分的测量值采用一阶近似修正,免去了积分重新运算,降低计算量
- 状态包含:
R
i
,
p
i
,
v
i
,
R
j
,
p
j
,
v
j
,
δ
b
i
g
,
δ
b
i
a
\mathbf{R}_{i}, \mathbf{p}_{i}, \mathbf{v}_{i}, \mathbf{R}_{j}, \mathbf{p}_{j}, \mathbf{v}_{j}, \delta \mathbf{b}_{i}^{g}, \delta \mathbf{b}_{i}^{a}
Ri,pi,vi,Rj,pj,vj,δbig,δbia,其中关于bias的是bias的偏差
r Δ R i j ≜ log { [ Δ R ~ i j ( b ‾ i g ) ⋅ Exp ( ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ) ] T ⋅ R i T R j } ≜ log [ ( Δ R ^ i j ) T Δ R i j ] r Δ v i j ≜ R i T ( v j − v i − g ⋅ Δ t i j ) − [ Δ v ~ i j ( b ‾ i g , b ‾ i a ) + ∂ Δ v ‾ i j ∂ b ‾ g δ b i g + ∂ Δ v ‾ i j ∂ b ‾ a δ b i a ] ≜ Δ v i j − Δ v ^ i j r Δ p i j ≜ R i T ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − [ Δ p ~ i j ( b ‾ i g , b ‾ i a ) + ∂ Δ p ‾ i j ∂ b ‾ g δ b i g + ∂ Δ p ‾ i j ∂ b ‾ a δ b i a ] ≜ Δ p i j − Δ p ^ i j \begin{aligned} \mathbf{r}_{\Delta \mathbf{R}_{i j}} & \triangleq \log \left\{\left[\Delta \tilde{\mathbf{R}}_{i j}\left(\overline{\mathbf{b}}_{i}^{g}\right) \cdot \operatorname{Exp}\left(\frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \delta \mathbf{b}_{i}^{g}\right)\right]^{T} \cdot \mathbf{R}_{i}^{T} \mathbf{R}_{j}\right\} \\ & \triangleq \log \left[\left(\Delta \hat{\mathbf{R}}_{i j}\right)^{T} \Delta \mathbf{R}_{i j}\right] \\ \mathbf{r}_{\Delta \mathbf{v}_{i j}} & \triangleq \mathbf{R}_{i}^{T}\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\left[\Delta \tilde{\mathbf{v}}_{i j}\left(\overline{\mathbf{b}}_{i}^{g}, \overline{\mathbf{b}}_{i}^{a}\right)+\frac{\partial \Delta \overline{\mathbf{v}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \delta \mathbf{b}_{i}^{g}+\frac{\partial \Delta \overline{\mathbf{v}}_{i j}}{\partial \overline{\mathbf{b}}^{a}} \delta \mathbf{b}_{i}^{a}\right] \\ & \triangleq \Delta \mathbf{v}_{i j}-\Delta \hat{\mathbf{v}}_{i j} \\ \mathbf{r}_{\Delta \mathbf{p}_{i j}} & \triangleq \mathbf{R}_{i}^{T}\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\left[\Delta \tilde{\mathbf{p}}_{i j}\left(\overline{\mathbf{b}}_{i}^{g}, \overline{\mathbf{b}}_{i}^{a}\right)+\frac{\partial \Delta \overline{\mathbf{p}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \delta \mathbf{b}_{i}^{g}+\frac{\partial \Delta \overline{\mathbf{p}}_{i j}}{\partial \overline{\mathbf{b}}^{a}} \delta \mathbf{b}_{i}^{a}\right] \\ & \triangleq \Delta \mathbf{p}_{i j}-\Delta \hat{\mathbf{p}}_{i j} \end{aligned} rΔRijrΔvijrΔpij≜log{[ΔR~ij(big)⋅Exp(∂bg∂ΔRijδbig)]T⋅RiTRj}≜log[(ΔR^ij)TΔRij]≜RiT(vj−vi−g⋅Δtij)−[Δv~ij(big,bia)+∂bg∂Δvijδbig+∂ba∂Δvijδbia]≜Δvij−Δv^ij≜RiT(pj−pi−vi⋅Δtij−21g⋅Δtij2)−[Δp~ij(big,bia)+∂bg∂Δpijδbig+∂ba∂Δpijδbia]≜Δpij−Δp^ij
r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij
-
r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij关于 δ ϕ ⃗ i \delta \vec{\phi}_{i} δϕi的jacobian
r Δ R i j ( R i Exp ( δ ϕ ⃗ i ) ) = log [ ( Δ R ^ i j ) T ( R i Exp ( δ ϕ ⃗ i ) ) T R j ] = ( 1 ) log [ ( Δ R ^ i j ) T Exp ( − δ ϕ ⃗ i ) R i T R j ] = 2 log [ ( Δ R ^ i j ) T R i T R j Exp ( − R j T R i δ ϕ ⃗ i ) ] = log { Exp [ log ( ( Δ R ^ i j ) T R i T R j ) ] ⋅ Exp ( − R j T R i δ ϕ ⃗ ) } = log [ Exp ( r Δ R i j ( R i ) ) ⋅ Exp ( − R j T R i δ ϕ ⃗ i ) ] ≈ 3 r Δ R i j ( R i ) − J r − 1 ( r Δ R i j ( R i ) ) R j T R i δ ϕ ⃗ i = 4 r Δ R i j − J r − 1 ( r Δ R i j ) R j T R i δ ϕ ⃗ i \begin{aligned} \mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\mathbf{R}_{i} \operatorname{Exp}\left(\delta \vec{\phi}_{i}\right)\right) & =\log \left[\left(\Delta \hat{\mathbf{R}}_{i j}\right)^{T}\left(\mathbf{R}_{i} \operatorname{Exp}\left(\delta \vec{\phi}_{i}\right)\right)^{T} \mathbf{R}_{j}\right] \\ & \stackrel{(1)}{=} \log \left[\left(\Delta \hat{\mathbf{R}}_{i j}\right)^{T} \operatorname{Exp}\left(-\delta \vec{\phi}_{i}\right) \mathbf{R}_{i}^{T} \mathbf{R}_{j}\right] \\ & \stackrel{2}{=} \log \left[\left(\Delta \hat{\mathbf{R}}_{i j}\right)^{T} \mathbf{R}_{i}^{T} \mathbf{R}_{j} \operatorname{Exp}\left(-\mathbf{R}_{j}^{T} \mathbf{R}_{i} \delta \vec{\phi}_{i}\right)\right] \\ & =\log \left\{\operatorname{Exp}\left[\log \left(\left(\Delta \hat{\mathbf{R}}_{i j}\right)^{T} \mathbf{R}_{i}^{T} \mathbf{R}_{j}\right)\right] \cdot \operatorname{Exp}\left(-\mathbf{R}_{j}^{T} \mathbf{R}_{i} \delta \vec{\phi}\right)\right\} \\ & =\log \left[\operatorname{Exp}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\mathbf{R}_{i}\right)\right) \cdot \operatorname{Exp}\left(-\mathbf{R}_{j}^{T} \mathbf{R}_{i} \delta \vec{\phi}_{i}\right)\right] \\ & \stackrel{3}{\approx} \mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\mathbf{R}_{i}\right)-\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\mathbf{R}_{i}\right)\right) \mathbf{R}_{j}^{T} \mathbf{R}_{i} \delta \vec{\phi}_{i} \\ & \stackrel{4}{=} \mathbf{r}_{\Delta \mathbf{R}_{i j}}-\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\right) \mathbf{R}_{j}^{T} \mathbf{R}_{i} \delta \vec{\phi}_{i} \end{aligned} rΔRij(RiExp(δϕi))=log[(ΔR^ij)T(RiExp(δϕi))TRj]=(1)log[(ΔR^ij)TExp(−δϕi)RiTRj]=2log[(ΔR^ij)TRiTRjExp(−RjTRiδϕi)]=log{Exp[log((ΔR^ij)TRiTRj)]⋅Exp(−RjTRiδϕ)}=log[Exp(rΔRij(Ri))⋅Exp(−RjTRiδϕi)]≈3rΔRij(Ri)−Jr−1(rΔRij(Ri))RjTRiδϕi=4rΔRij−Jr−1(rΔRij)RjTRiδϕi
可以得到:
∂ r Δ R i j ∂ δ ϕ ⃗ i = − J r − 1 ( r Δ R i j ) R j T R i \frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \vec{\phi}_{i}}=-\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\right) \mathbf{R}_{j}^{T} \mathbf{R}_{i} ∂δϕi∂rΔRij=−Jr−1(rΔRij)RjTRi -
r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij关于 δ ϕ ⃗ j \delta \vec{\phi}_{j} δϕj的jacobian
r Δ R i j ( R j Exp ( δ ϕ ⃗ j ) ) = log [ ( Δ R ^ i j ) T R i T R j Exp ( δ ϕ ⃗ j ) ] = log { Exp [ log ( ( Δ R ^ i j ) T R i T R j ) ] ⋅ Exp ( δ ϕ ⃗ j ) } = log { Exp ( r Δ R i j ( R j ) ) ⋅ Exp ( δ ϕ ⃗ j ) } ≈ ( 1 ) r Δ R i j ( R j ) + J r − 1 ( r Δ R i j ( R j ) ) δ ϕ ⃗ j = 2 r Δ R i j + J r − 1 ( r Δ R i j ) δ ϕ ⃗ j \begin{aligned} \mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\mathbf{R}_{j} \operatorname{Exp}\left(\delta \vec{\phi}_{j}\right)\right) & =\log \left[\left(\Delta \hat{\mathbf{R}}_{i j}\right)^{T} \mathbf{R}_{i}^{T} \mathbf{R}_{j} \operatorname{Exp}\left(\delta \vec{\phi}_{j}\right)\right] \\ & =\log \left\{\operatorname{Exp}\left[\log \left(\left(\Delta \hat{\mathbf{R}}_{i j}\right)^{T} \mathbf{R}_{i}^{T} \mathbf{R}_{j}\right)\right] \cdot \operatorname{Exp}\left(\delta \vec{\phi}_{j}\right)\right\} \\ & =\log \left\{\operatorname{Exp}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\mathbf{R}_{j}\right)\right) \cdot \operatorname{Exp}\left(\delta \vec{\phi}_{j}\right)\right\} \\ & \stackrel{(1)}{\approx} \mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\mathbf{R}_{j}\right)+\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\mathbf{R}_{j}\right)\right) \delta \vec{\phi}_{j} \\ & \stackrel{2}{=} \mathbf{r}_{\Delta \mathbf{R}_{i j}}+\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\right) \delta \vec{\phi}_{j} \end{aligned} rΔRij(RjExp(δϕj))=log[(ΔR^ij)TRiTRjExp(δϕj)]=log{Exp[log((ΔR^ij)TRiTRj)]⋅Exp(δϕj)}=log{Exp(rΔRij(Rj))⋅Exp(δϕj)}≈(1)rΔRij(Rj)+Jr−1(rΔRij(Rj))δϕj=2rΔRij+Jr−1(rΔRij)δϕj
可以得到:
∂ r Δ R i j ∂ δ ϕ ⃗ j = J r − 1 ( r Δ R i j ) \frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \vec{\phi}_{j}}=\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\right) ∂δϕj∂rΔRij=Jr−1(rΔRij) -
r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij关于 δ p i \delta p_{i} δpi的jacobian
∂ r Δ R i j ∂ δ p i = ∂ r Δ R i j ∂ p i = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \mathbf{p}_{i}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \mathbf{p}_{i}}=\mathbf{0} ∂δpi∂rΔRij=∂pi∂rΔRij=0 -
r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij关于 δ p j \delta p_{j} δpj的jacobian
∂ r Δ R i j ∂ δ p j = ∂ r Δ R i j ∂ p j = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \mathbf{p}_{j}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \mathbf{p}_{j}}=\mathbf{0} ∂δpj∂rΔRij=∂pj∂rΔRij=0 -
r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij关于 δ v i \delta v_{i} δvi的jacobian
∂ r Δ R i j ∂ δ v i = ∂ r Δ R i j ∂ v i = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \mathbf{v}_{i}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \mathbf{v}_{i}}=\mathbf{0} ∂δvi∂rΔRij=∂vi∂rΔRij=0 -
r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij关于 δ v j \delta v_{j} δvj的jacobian
∂ r Δ R i j ∂ δ v j = ∂ r Δ R i j ∂ v j = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \mathbf{v}_{j}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \mathbf{v}_{j}}=\mathbf{0} ∂δvj∂rΔRij=∂vj∂rΔRij=0 -
r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij关于 δ b i a \delta \mathbf{b}_{i}^{a} δbia的jacobian
∂ r Δ R i j ∂ δ b i a = ∂ r Δ R i j ∂ δ b i a = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \mathbf{b}_{i}^{a}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \mathbf{b}_{i}^{a}}=\mathbf{0} ∂δbia∂rΔRij=∂δbia∂rΔRij=0 -
r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij关于 δ b i g \delta \mathbf{b}_{i}^{g} δbig的jacobian
r Δ R i j ( δ b i g + δ b i g ~ ) = log { [ Δ R ~ i j ( b ‾ i g ) Exp ( ∂ Δ R ‾ i j ∂ b ‾ g ( δ b i g + δ b i g ~ ) ) ] T R i T R j } ≈ ( 1 ) log { [ Δ R ~ i j ( b ‾ i g ) Exp ( ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ) Exp ( J r ( ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ) ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ~ ) ] T Δ R i j } = ( 2 ) log { [ Δ R ^ i j ⋅ Exp ( ε ⋅ ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ^ ) ] T Δ R i j } = ( 3 ) log [ Exp ( − ε ⋅ ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ~ ) Δ R ^ i j T Δ R i j ] = log [ Exp ( − ε ⋅ ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ~ ) Exp ( log ( Δ R ^ i j T Δ R i j ) ) ] = log [ Exp ( − ε ⋅ ∂ Δ R ‾ i j δ b ‾ i g ~ ∂ b ‾ g ) Exp ( r Δ R i j ( δ b i g ) ) ] = ( 4 ) log { Exp ( r Δ R i j ( δ b i g ) ) Exp [ − Exp ( − r Δ R i j ( δ b i g ) ) ⋅ ε ⋅ ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ~ ] } ≈ ( 5 ) r Δ R i j ( δ b i g ) − J r − 1 ( r Δ R i j ( δ b i g ) ) ⋅ Exp ( − r Δ R i j ( δ b i g ) ) ⋅ ε ⋅ ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ~ = ( 6 ) r Δ R i j − J r − 1 ( r Δ R i j ) ⋅ Exp ( − r Δ R i j ) ⋅ J r ( ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ) ⋅ ∂ Δ R ‾ i j ∂ b ‾ g ⋅ δ b i g ~ \begin{array}{l} \mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\delta \mathbf{b}_{i}^{g}+\widetilde{\delta \mathbf{b}_{i}^{g}}\right)=\log \left\{\left[\Delta \tilde{\mathbf{R}}_{i j}\left(\overline{\mathbf{b}}_{i}^{g}\right) \operatorname{Exp}\left(\frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}}\left(\delta \mathbf{b}_{i}^{g}+\widetilde{\delta \mathbf{b}_{i}^{g}}\right)\right)\right]^{T} \mathbf{R}_{i}^{T} \mathbf{R}_{j}\right\} \\ \stackrel{(1)}{\approx} \log \left\{\left[\Delta \tilde{\mathbf{R}}_{i j}\left(\overline{\mathbf{b}}_{i}^{g}\right) \operatorname{Exp}\left(\frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \delta \mathbf{b}_{i}^{g}\right) \operatorname{Exp}\left(\mathbf{J}_{r}\left(\frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \delta \mathbf{b}_{i}^{g}\right) \frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \widetilde{\delta \mathbf{b}_{i}^{g}}\right)\right]^{T} \Delta \mathbf{R}_{i j}\right\} \\ \stackrel{(2)}{=} \log \left\{\left[\Delta \hat{\mathbf{R}}_{i j} \cdot \operatorname{Exp}\left(\boldsymbol{\varepsilon} \cdot \frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \widehat{\delta \mathbf{b}_{i}^{g}}\right)\right]^{T} \Delta \mathbf{R}_{i j}\right\} \\ \stackrel{(3)}{=} \log \left[\operatorname{Exp}\left(-\boldsymbol{\varepsilon} \cdot \frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \widetilde{\delta \mathbf{b}_{i}^{g}}\right) \Delta \hat{\mathbf{R}}_{i j}^{T} \Delta \mathbf{R}_{i j}\right] \\ =\log \left[\operatorname{Exp}\left(-\boldsymbol{\varepsilon} \cdot \frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \widetilde{\delta \mathbf{b}_{i}^{g}}\right) \operatorname{Exp}\left(\log \left(\Delta \hat{\mathbf{R}}_{i j}^{T} \Delta \mathbf{R}_{i j}\right)\right)\right] \\ =\log \left[\operatorname{Exp}\left(-\boldsymbol{\varepsilon} \cdot \frac{\partial \Delta \overline{\mathbf{R}}_{i j} \widetilde{\delta \overline{\mathbf{b}}_{i}^{g}}}{\partial \overline{\mathbf{b}}^{g}}\right) \operatorname{Exp}\left(\mathbf{r}_{\Delta \mathbb{R}_{i j}}\left(\delta \mathbf{b}_{i}^{g}\right)\right)\right] \\ \stackrel{(4)}{=} \log \left\{\operatorname{Exp}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\delta \mathbf{b}_{i}^{g}\right)\right) \operatorname{Exp}\left[-\operatorname{Exp}\left(-\mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\delta \mathbf{b}_{i}^{g}\right)\right) \cdot \varepsilon \cdot \frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \widetilde{\delta \mathbf{b}_{i}^{g}}\right]\right\} \\ \stackrel{(5)}{\approx} \mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\delta \mathbf{b}_{i}^{g}\right)-\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\delta \mathbf{b}_{i}^{g}\right)\right) \cdot \operatorname{Exp}\left(-\mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\delta \mathbf{b}_{i}^{g}\right)\right) \cdot \boldsymbol{\varepsilon} \cdot \frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \widetilde{\delta \mathbf{b}_{i}^{g}} \\ \stackrel{(6)}{=} \mathbf{r}_{\Delta \mathbf{R}_{i j}}-\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbb{R}_{i j}}\right) \cdot \operatorname{Exp}\left(-\mathbf{r}_{\Delta \mathbf{R}_{i j}}\right) \cdot \mathbf{J}_{r}\left(\frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \delta \mathbf{b}_{i}^{g}\right) \cdot \frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \cdot \widetilde{\delta \mathbf{b}_{i}^{g}} \\ \end{array} rΔRij(δbig+δbig )=log{[ΔR~ij(big)Exp(∂bg∂ΔRij(δbig+δbig ))]TRiTRj}≈(1)log{[ΔR~ij(big)Exp(∂bg∂ΔRijδbig)Exp(Jr(∂bg∂ΔRijδbig)∂bg∂ΔRijδbig )]TΔRij}=(2)log{[ΔR^ij⋅Exp(ε⋅∂bg∂ΔRijδbig )]TΔRij}=(3)log[Exp(−ε⋅∂bg∂ΔRijδbig )ΔR^ijTΔRij]=log[Exp(−ε⋅∂bg∂ΔRijδbig )Exp(log(ΔR^ijTΔRij))]=log[Exp(−ε⋅∂bg∂ΔRijδbig )Exp(rΔRij(δbig))]=(4)log{Exp(rΔRij(δbig))Exp[−Exp(−rΔRij(δbig))⋅ε⋅∂bg∂ΔRijδbig ]}≈(5)rΔRij(δbig)−Jr−1(rΔRij(δbig))⋅Exp(−rΔRij(δbig))⋅ε⋅∂bg∂ΔRijδbig =(6)rΔRij−Jr−1(rΔRij)⋅Exp(−rΔRij)⋅Jr(∂bg∂ΔRijδbig)⋅∂bg∂ΔRij⋅δbig
可以得到:
∂ r Δ R i j ∂ δ b i g ~ = ∂ r Δ R i j ∂ δ b i g = − J r − 1 ( r Δ R i j ) ⋅ Exp ( − r Δ R i j ) ⋅ J r ( ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ) ⋅ ∂ Δ R ‾ i j ∂ b ‾ g \frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \widetilde{\delta \mathbf{b}_{i}^{g}}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \mathbf{b}_{i}^{g}}=-\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\right) \cdot \operatorname{Exp}\left(-\mathbf{r}_{\Delta \mathbf{R}_{i j}}\right) \cdot \mathbf{J}_{r}\left(\frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \delta \mathbf{b}_{i}^{g}\right) \cdot \frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} ∂δbig ∂rΔRij=∂δbig∂rΔRij=−Jr−1(rΔRij)⋅Exp(−rΔRij)⋅Jr(∂bg∂ΔRijδbig)⋅∂bg∂ΔRij
r Δ v i j \mathbf{r}_{\Delta \mathbf{v}_{i j}} rΔvij
-
r
Δ
v
i
j
\mathbf{r}_{\Delta \mathbf{v}_{i j}}
rΔvij关于
δ
ϕ
⃗
i
\delta \vec{\phi}_{i}
δϕi的jacobian
r Δ v i j ( R i Exp ( δ ϕ ⃗ i ) ) = ( R i Exp ( δ ϕ ⃗ i ) ) T ( v j − v i − g ⋅ Δ t i j ) − Δ v ^ i j = ( 1 ) Exp ( − δ ϕ i → ) ⋅ R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) − Δ v ^ i j ≈ ( 2 ) ( I − ( δ ϕ ⃗ i ) ∧ ) ⋅ R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) − Δ v ^ i j = R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) − Δ v ^ i j − ( δ ϕ ⃗ i ) ∧ ⋅ R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) = ( 3 ) r Δ v i j ( R i ) + [ R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) ] ∧ ⋅ δ ϕ ⃗ i = ( 4 ) r Δ v i j + [ R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) ] ∧ ⋅ δ ϕ ⃗ i \begin{aligned} \mathbf{r}_{\Delta \mathbf{v}_{i j}}\left(\mathbf{R}_{i} \operatorname{Exp}\left(\delta \vec{\phi}_{i}\right)\right) & =\left(\mathbf{R}_{i} \operatorname{Exp}\left(\delta \vec{\phi}_{i}\right)\right)^{T}\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\Delta \hat{\mathbf{v}}_{i j} \\ & \stackrel{(1)}{=} \operatorname{Exp}\left(-\delta \overrightarrow{\phi_{i}}\right) \cdot \mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\Delta \hat{\mathbf{v}}_{i j} \\ & \stackrel{(2)}{\approx}\left(\mathbf{I}-\left(\delta \vec{\phi}_{i}\right)^{\wedge}\right) \cdot \mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\Delta \hat{\mathbf{v}}_{i j} \\ & =\mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\Delta \hat{\mathbf{v}}_{i j}-\left(\delta \vec{\phi}_{i}\right)^{\wedge} \cdot \mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right) \\ & \stackrel{(3)}{=} \mathbf{r}_{\Delta \mathbf{v}_{i j}}\left(\mathbf{R}_{i}\right)+\left[\mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)\right]^{\wedge} \cdot \delta \vec{\phi}_{i} \\ & \stackrel{(4)}{=} \mathbf{r}_{\Delta \mathbf{v}_{i j}}+\left[\mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)\right]^{\wedge} \cdot \delta \vec{\phi}_{i} \end{aligned} rΔvij(RiExp(δϕi))=(RiExp(δϕi))T(vj−vi−g⋅Δtij)−Δv^ij=(1)Exp(−δϕi)⋅RiT⋅(vj−vi−g⋅Δtij)−Δv^ij≈(2)(I−(δϕi)∧)⋅RiT⋅(vj−vi−g⋅Δtij)−Δv^ij=RiT⋅(vj−vi−g⋅Δtij)−Δv^ij−(δϕi)∧⋅RiT⋅(vj−vi−g⋅Δtij)=(3)rΔvij(Ri)+[RiT⋅(vj−vi−g⋅Δtij)]∧⋅δϕi=(4)rΔvij+[RiT⋅(vj−vi−g⋅Δtij)]∧⋅δϕi
可以得到:
∂ r Δ v i j ∂ δ ϕ ⃗ i = [ R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) ] ∧ \frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \delta \vec{\phi}_{i}}=\left[\mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)\right]^{\wedge} ∂δϕi∂rΔvij=[RiT⋅(vj−vi−g⋅Δtij)]∧ -
r
Δ
v
i
j
\mathbf{r}_{\Delta \mathbf{v}_{i j}}
rΔvij关于
δ
ϕ
⃗
j
\delta \vec{\phi}_{j}
δϕj的jacobian
∂ r Δ v i j ∂ δ ϕ ⃗ j = 0 \frac{\partial \mathbf{r}_{\Delta v_{ij}}}{\partial \delta \vec{\phi}_{j}}=\mathbf{0} ∂δϕj∂rΔvij=0 -
r
Δ
v
i
j
\mathbf{r}_{\Delta \mathbf{v}_{i j}}
rΔvij关于
δ
p
i
\delta p_{i}
δpi的jacobian
∂ r Δ v i j ∂ δ p i = ∂ r Δ v i j ∂ p i = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \delta \mathbf{p}_{i}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \mathbf{p}_{i}}=\mathbf{0} ∂δpi∂rΔvij=∂pi∂rΔvij=0 -
r
Δ
v
i
j
\mathbf{r}_{\Delta \mathbf{v}_{i j}}
rΔvij关于
δ
p
j
\delta p_{j}
δpj的jacobian
∂ r Δ v i j ∂ δ p j = ∂ r Δ v i j ∂ p j = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \delta \mathbf{p}_{j}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \mathbf{p}_{j}}=\mathbf{0} ∂δpj∂rΔvij=∂pj∂rΔvij=0 -
r
Δ
v
i
j
\mathbf{r}_{\Delta \mathbf{v}_{i j}}
rΔvij关于
δ
v
i
\delta v_{i}
δvi的jacobian
r Δ v i j ( v i + δ v i ) = R i T ⋅ ( v j − v i − δ v i − g ⋅ Δ t i j ) − Δ v ^ i j = R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) − Δ v ^ i j − R i T δ v i = r Δ v i j ( v i ) − R i T δ v i 11 = r Δ v i j − R i T δ v i \begin{aligned} \mathbf{r}_{\Delta \mathbf{v}_{i j}}\left(\mathbf{v}_{i}+\delta \mathbf{v}_{i}\right) & =\mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\delta \mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\Delta \hat{\mathbf{v}}_{i j} \\ & =\mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\Delta \hat{\mathbf{v}}_{i j}-\mathbf{R}_{i}^{T} \delta \mathbf{v}_{i} \\ & =\mathbf{r}_{\Delta \mathbf{v}_{i j}}\left(\mathbf{v}_{i}\right)-\mathbf{R}_{i}^{T} \delta \mathbf{v}_{i} \\ & \stackrel{11}{ }=\mathbf{r}_{\Delta \mathbf{v}_{i j}}-\mathbf{R}_{i}^{T} \delta \mathbf{v}_{i} \end{aligned} rΔvij(vi+δvi)=RiT⋅(vj−vi−δvi−g⋅Δtij)−Δv^ij=RiT⋅(vj−vi−g⋅Δtij)−Δv^ij−RiTδvi=rΔvij(vi)−RiTδvi11=rΔvij−RiTδvi
可以得到:
∂ r Δ v i j ∂ δ v i = ∂ r Δ v i j ∂ v i = − R i T \frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \delta \mathbf{v}_{i}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \mathbf{v}_{i}}=-\mathbf{R}_{i}^{T} ∂δvi∂rΔvij=∂vi∂rΔvij=−RiT -
r
Δ
v
i
j
\mathbf{r}_{\Delta \mathbf{v}_{i j}}
rΔvij关于
δ
v
j
\delta v_{j}
δvj的jacobian
r Δ v i j ( v j + δ v j ) = R i T ⋅ ( v j + δ v j − v i − g ⋅ Δ t i j ) − Δ v ^ i j = R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) − Δ v ^ i j + R i T δ v j = r Δ v i j ( v j ) + R i T δ v j = r Δ v i j + R i T δ v j \begin{aligned} \mathbf{r}_{\Delta \mathbf{v}_{i j}}\left(\mathbf{v}_{j}+\delta \mathbf{v}_{j}\right) & =\mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}+\delta \mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\Delta \hat{\mathbf{v}}_{i j} \\ & =\mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\Delta \hat{\mathbf{v}}_{i j}+\mathbf{R}_{i}^{T} \delta \mathbf{v}_{j} \\ & =\mathbf{r}_{\Delta \mathbf{v}_{i j}}\left(\mathbf{v}_{j}\right)+\mathbf{R}_{i}^{T} \delta \mathbf{v}_{j} \\ & =\mathbf{r}_{\Delta \mathbf{v}_{i j}}+\mathbf{R}_{i}^{T} \delta \mathbf{v}_{j} \end{aligned} rΔvij(vj+δvj)=RiT⋅(vj+δvj−vi−g⋅Δtij)−Δv^ij=RiT⋅(vj−vi−g⋅Δtij)−Δv^ij+RiTδvj=rΔvij(vj)+RiTδvj=rΔvij+RiTδvj
可以得到:
∂ r Δ v i j ∂ δ v j = ∂ r Δ v i j ∂ v j = R i T \frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \delta \mathbf{v}_{j}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \mathbf{v}_{j}}=\mathbf{R}_{i}^{T} ∂δvj∂rΔvij=∂vj∂rΔvij=RiT -
r
Δ
v
i
j
\mathbf{r}_{\Delta \mathbf{v}_{i j}}
rΔvij关于
δ
b
i
a
\delta \mathbf{b}_{i}^{a}
δbia的jacobian
∂ r Δ v i j ∂ δ b i g ~ = ∂ r Δ v i j ∂ δ b i g = − ∂ Δ v ‾ i j ∂ b g \frac{\partial \mathbf{r}_{\Delta v_{i j}}}{\partial \widetilde{\delta \mathbf{b}_{i}^{\mathrm{g}}}}=\frac{\partial \mathbf{r}_{\Delta v_{i j}}}{\partial \delta \mathbf{b}_{i}^{\mathrm{g}}}=-\frac{\partial \Delta \overline{\mathbf{v}}_{i j}}{\partial \mathbf{b}^{g}} ∂δbig ∂rΔvij=∂δbig∂rΔvij=−∂bg∂Δvij -
r
Δ
v
i
j
\mathbf{r}_{\Delta \mathbf{v}_{i j}}
rΔvij关于
δ
b
i
g
\delta \mathbf{b}_{i}^{g}
δbig的jacobian
∂ r Δ v i j ∂ δ b i a ~ = ∂ r Δ v i j ∂ δ b i a = − ∂ Δ v ‾ i j ∂ b a \frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \widetilde{\delta \mathbf{b}_{i}^{\mathrm{a}}}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \delta \mathbf{b}_{i}^{\mathrm{a}}}=-\frac{\partial \Delta \overline{\mathbf{v}}_{i j}}{\partial \mathbf{b}^{a}} ∂δbia ∂rΔvij=∂δbia∂rΔvij=−∂ba∂Δvij
r Δ p i j \mathbf{r}_{\Delta \mathbf{p}_{i j}} rΔpij
-
r
Δ
p
i
j
\mathbf{r}_{\Delta \mathbf{p}_{i j}}
rΔpij关于
δ
ϕ
⃗
i
\delta \vec{\phi}_{i}
δϕi的jacobian
r Δ p p ( R i Exp ( δ ϕ i → ) ) = ( R i Exp ( δ ϕ ⃗ i ) ) T ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j = ( 1 ) Exp ( − δ ϕ ⃗ i ) ⋅ R i T ⋅ ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j ( 2 ) ( I − ( δ ϕ ⃗ i ) ∧ ) ⋅ R i T ⋅ ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j = R i T ⋅ ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j − ( δ ϕ ⃗ i ) ∧ R i T ⋅ ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) = ( 3 ) r Δ p y j ( R i ) + [ R i T ⋅ ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) ] ∧ ⋅ δ ϕ ⃗ i = ( 4 ) r Δ p y + [ R i T ⋅ ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) ] ⋅ δ ϕ ⃗ i \begin{aligned} \mathbf{r}_{\Delta \mathbf{p}_{\mathrm{p}}}\left(\mathbf{R}_{i} \operatorname{Exp}\left(\delta \overrightarrow{\phi_{i}}\right)\right) & =\left(\mathbf{R}_{i} \operatorname{Exp}\left(\delta \vec{\phi}_{i}\right)\right)^{T}\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j} \\ & \stackrel{(1)}{=} \operatorname{Exp}\left(-\delta \vec{\phi}_{i}\right) \cdot \mathbf{R}_{i}^{T} \cdot\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j} \\ & \stackrel{(2)}{ }\left(\mathbf{I}-\left(\delta \vec{\phi}_{i}\right)^{\wedge}\right) \cdot \mathbf{R}_{i}^{T} \cdot\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j} \\ & =\mathbf{R}_{i}^{T} \cdot\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j}-\left(\delta \vec{\phi}_{i}\right)^{\wedge} \mathbf{R}_{i}^{T} \cdot\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right) \\ & \stackrel{(3)}{=} \mathbf{r}_{\Delta \mathbf{p}_{y j}}\left(\mathbf{R}_{i}\right)+\left[\mathbf{R}_{i}^{T} \cdot\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)\right]^{\wedge} \cdot \delta \vec{\phi}_{i} \\ & \stackrel{(4)}{=} \mathbf{r}_{\Delta \mathbf{p}_{y}}+\left[\mathbf{R}_{i}^{T} \cdot\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)\right] \cdot \delta \vec{\phi}_{i} \end{aligned} rΔpp(RiExp(δϕi))=(RiExp(δϕi))T(pj−pi−vi⋅Δtij−21g⋅Δtij2)−Δp^ij=(1)Exp(−δϕi)⋅RiT⋅(pj−pi−vi⋅Δtij−21g⋅Δtij2)−Δp^ij(2)(I−(δϕi)∧)⋅RiT⋅(pj−pi−vi⋅Δtij−21g⋅Δtij2)−Δp^ij=RiT⋅(pj−pi−vi⋅Δtij−21g⋅Δtij2)−Δp^ij−(δϕi)∧RiT⋅(pj−pi−vi⋅Δtij−21g⋅Δtij2)=(3)rΔpyj(Ri)+[RiT⋅(pj−pi−vi⋅Δtij−21g⋅Δtij2)]∧⋅δϕi=(4)rΔpy+[RiT⋅(pj−pi−vi⋅Δtij−21g⋅Δtij2)]⋅δϕi
可以得到:
∂ r Δ p i j ∂ δ ϕ i → = [ R i T ⋅ ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) ] ∧ \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \delta \overrightarrow{\phi_{i}}}=\left[\mathbf{R}_{i}^{T} \cdot\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)\right]^{\wedge} ∂δϕi∂rΔpij=[RiT⋅(pj−pi−vi⋅Δtij−21g⋅Δtij2)]∧ -
r
Δ
p
i
j
\mathbf{r}_{\Delta \mathbf{p}_{i j}}
rΔpij关于
δ
ϕ
⃗
j
\delta \vec{\phi}_{j}
δϕj的jacobian
∂ r Δ p i j ∂ δ ϕ ⃗ j = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \delta \vec{\phi}_{j}}=\mathbf{0} ∂δϕj∂rΔpij=0 -
r
Δ
p
i
j
\mathbf{r}_{\Delta \mathbf{p}_{i j}}
rΔpij关于
δ
p
i
\delta p_{i}
δpi的jacobian
r Δ p i j ( p i + R i ⋅ δ p i ) = R i T ( p j − p i − R i ⋅ δ p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j = R i T ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j − I ⋅ δ p i = r Δ p i j ( p i ) − I ⋅ δ p i 1 = r Δ p i j − I ⋅ δ p i \begin{aligned} \mathbf{r}_{\Delta \mathbf{p}_{i j}}\left(\mathbf{p}_{i}+\mathbf{R}_{i} \cdot \delta \mathbf{p}_{i}\right) & =\mathbf{R}_{i}^{T}\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{R}_{i} \cdot \delta \mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j} \\ & =\mathbf{R}_{i}^{T}\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j}-\mathbf{I} \cdot \delta \mathbf{p}_{i} \\ & =\mathbf{r}_{\Delta \mathbf{p}_{i j}}\left(\mathbf{p}_{i}\right)-\mathbf{I} \cdot \delta \mathbf{p}_{i} \\ & \stackrel{1}{ } \\ & =\mathbf{r}_{\Delta \mathbf{p}_{i j}}-\mathbf{I} \cdot \delta \mathbf{p}_{i} \end{aligned} rΔpij(pi+Ri⋅δpi)=RiT(pj−pi−Ri⋅δpi−vi⋅Δtij−21g⋅Δtij2)−Δp^ij=RiT(pj−pi−vi⋅Δtij−21g⋅Δtij2)−Δp^ij−I⋅δpi=rΔpij(pi)−I⋅δpi1=rΔpij−I⋅δpi -
r
Δ
p
i
j
\mathbf{r}_{\Delta \mathbf{p}_{i j}}
rΔpij关于
δ
p
j
\delta p_{j}
δpj的jacobian
r Δ p i j ( p j + R j ⋅ δ p j ) = R i T ( p j + R j ⋅ δ p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j = R i T ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j + R i T R j ⋅ δ p j = r Δ p i j ( p j ) + R i T R j ⋅ δ p j = ( 1 ) r Δ p i j + R i T R j ⋅ δ p j \begin{aligned} \mathbf{r}_{\Delta \mathbf{p}_{i j}}\left(\mathbf{p}_{j}+\mathbf{R}_{j} \cdot \delta \mathbf{p}_{j}\right) & =\mathbf{R}_{i}^{T}\left(\mathbf{p}_{j}+\mathbf{R}_{j} \cdot \delta \mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j} \\ & =\mathbf{R}_{i}^{T}\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j}+\mathbf{R}_{i}^{T} \mathbf{R}_{j} \cdot \delta \mathbf{p}_{j} \\ & =\mathbf{r}_{\Delta \mathbf{p}_{i j}}\left(\mathbf{p}_{j}\right)+\mathbf{R}_{i}^{T} \mathbf{R}_{j} \cdot \delta \mathbf{p}_{j} \\ & \stackrel{(1)}{=} \mathbf{r}_{\Delta \mathbf{p}_{i j}}+\mathbf{R}_{i}^{T} \mathbf{R}_{j} \cdot \delta \mathbf{p}_{j} \end{aligned} rΔpij(pj+Rj⋅δpj)=RiT(pj+Rj⋅δpj−pi−vi⋅Δtij−21g⋅Δtij2)−Δp^ij=RiT(pj−pi−vi⋅Δtij−21g⋅Δtij2)−Δp^ij+RiTRj⋅δpj=rΔpij(pj)+RiTRj⋅δpj=(1)rΔpij+RiTRj⋅δpj
可以得到:
∂ r Δ p i j ∂ δ p j = ∂ r Δ p i j ∂ p j = R i T R j \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \delta \mathbf{p}_{j}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \mathbf{p}_{j}}=\mathbf{R}_{i}^{T} \mathbf{R}_{j} ∂δpj∂rΔpij=∂pj∂rΔpij=RiTRj -
r
Δ
p
i
j
\mathbf{r}_{\Delta \mathbf{p}_{i j}}
rΔpij关于
δ
v
i
\delta v_{i}
δvi的jacobian
r Δ p i j ( v i + δ v i ) = R i T ( p j − p i − v i ⋅ Δ t i j − δ v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j = R i T ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j − R i T Δ t i j ⋅ δ v i = r Δ p i j ( v i ) − R i T Δ t i j ⋅ δ v i ( 1 ) = r Δ p i j − R i T Δ t i j ⋅ δ v i \begin{aligned} \mathbf{r}_{\Delta \mathbf{p}_{i j}}\left(\mathbf{v}_{i}+\delta \mathbf{v}_{i}\right) & =\mathbf{R}_{i}^{T}\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\delta \mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j} \\ & =\mathbf{R}_{i}^{T}\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j}-\mathbf{R}_{i}^{T} \Delta t_{i j} \cdot \delta \mathbf{v}_{i} \\ & =\mathbf{r}_{\Delta \mathbf{p}_{i j}}\left(\mathbf{v}_{i}\right)-\mathbf{R}_{i}^{T} \Delta t_{i j} \cdot \delta \mathbf{v}_{i} \\ & \stackrel{(1)}{ } \\ & =\mathbf{r}_{\Delta \mathbf{p}_{i j}}-\mathbf{R}_{i}^{T} \Delta t_{i j} \cdot \delta \mathbf{v}_{i} \end{aligned} rΔpij(vi+δvi)=RiT(pj−pi−vi⋅Δtij−δvi⋅Δtij−21g⋅Δtij2)−Δp^ij=RiT(pj−pi−vi⋅Δtij−21g⋅Δtij2)−Δp^ij−RiTΔtij⋅δvi=rΔpij(vi)−RiTΔtij⋅δvi(1)=rΔpij−RiTΔtij⋅δvi
可以得到:
∂ r Δ p i j ∂ δ v i = ∂ r Δ p i j ∂ v i = − R i T Δ t i j \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \delta \mathbf{v}_{i}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \mathbf{v}_{i}}=-\mathbf{R}_{i}^{T} \Delta t_{i j} ∂δvi∂rΔpij=∂vi∂rΔpij=−RiTΔtij - r Δ p i j \mathbf{r}_{\Delta \mathbf{p}_{i j}} rΔpij关于 δ v j \delta v_{j} δvj的jacobian
∂ r Δ p i j ∂ δ v j = ∂ r Δ p i j ∂ v j = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \delta \mathbf{v}_{j}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \mathbf{v}_{j}}=\mathbf{0} ∂δvj∂rΔpij=∂vj∂rΔpij=0
- r Δ p i j \mathbf{r}_{\Delta \mathbf{p}_{i j}} rΔpij关于 δ b i a \delta \mathbf{b}_{i}^{a} δbia的jacobian
∂ r Δ p i j ∂ δ b i g ^ = ∂ r Δ p i j ∂ δ b i g = − ∂ Δ p ‾ i j ∂ b g \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \widehat{\delta \mathbf{b}_{i}^{g}}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \delta \mathbf{b}_{i}^{g}}=-\frac{\partial \Delta \overline{\mathbf{p}}_{i j}}{\partial \mathbf{b}^{g}} ∂δbig ∂rΔpij=∂δbig∂rΔpij=−∂bg∂Δpij
- r Δ p i j \mathbf{r}_{\Delta \mathbf{p}_{i j}} rΔpij关于 δ b i g \delta \mathbf{b}_{i}^{g} δbig的jacobian
∂ r Δ p i j ∂ δ b i a = − ∂ Δ p ‾ i j ∂ b a \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \delta \mathbf{b}_{i}^{a}}=-\frac{\partial \Delta \overline{\mathbf{p}}_{i j}}{\partial \mathbf{b}^{a}} ∂δbia∂rΔpij=−∂ba∂Δpij