ORB_SLAM3_IMU预积分理论推导(残差)

ORB_SLAM3是一个视觉惯性里程计系统,其关键部分包括初始化、IMU预积分和残差计算。在初始化阶段,系统构建帧并进行匹配。IMU预积分考虑了姿态和速度的累积误差,而残差用于优化过程,通过一阶近似修正避免了积分的重新计算。这些理论对于理解和实现高精度的定位至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

残差

  • 预积分的测量值采用一阶近似修正,免去了积分重新运算,降低计算量
  • 状态包含: R i , p i , v i , R j , p j , v j , δ b i g , δ b i a \mathbf{R}_{i}, \mathbf{p}_{i}, \mathbf{v}_{i}, \mathbf{R}_{j}, \mathbf{p}_{j}, \mathbf{v}_{j}, \delta \mathbf{b}_{i}^{g}, \delta \mathbf{b}_{i}^{a} Ri,pi,vi,Rj,pj,vj,δbig,δbia,其中关于bias的是bias的偏差
    r Δ R i j ≜ log ⁡ { [ Δ R ~ i j ( b ‾ i g ) ⋅ Exp ⁡ ( ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ) ] T ⋅ R i T R j } ≜ log ⁡ [ ( Δ R ^ i j ) T Δ R i j ] r Δ v i j ≜ R i T ( v j − v i − g ⋅ Δ t i j ) − [ Δ v ~ i j ( b ‾ i g , b ‾ i a ) + ∂ Δ v ‾ i j ∂ b ‾ g δ b i g + ∂ Δ v ‾ i j ∂ b ‾ a δ b i a ] ≜ Δ v i j − Δ v ^ i j r Δ p i j ≜ R i T ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − [ Δ p ~ i j ( b ‾ i g , b ‾ i a ) + ∂ Δ p ‾ i j ∂ b ‾ g δ b i g + ∂ Δ p ‾ i j ∂ b ‾ a δ b i a ] ≜ Δ p i j − Δ p ^ i j \begin{aligned} \mathbf{r}_{\Delta \mathbf{R}_{i j}} & \triangleq \log \left\{\left[\Delta \tilde{\mathbf{R}}_{i j}\left(\overline{\mathbf{b}}_{i}^{g}\right) \cdot \operatorname{Exp}\left(\frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \delta \mathbf{b}_{i}^{g}\right)\right]^{T} \cdot \mathbf{R}_{i}^{T} \mathbf{R}_{j}\right\} \\ & \triangleq \log \left[\left(\Delta \hat{\mathbf{R}}_{i j}\right)^{T} \Delta \mathbf{R}_{i j}\right] \\ \mathbf{r}_{\Delta \mathbf{v}_{i j}} & \triangleq \mathbf{R}_{i}^{T}\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\left[\Delta \tilde{\mathbf{v}}_{i j}\left(\overline{\mathbf{b}}_{i}^{g}, \overline{\mathbf{b}}_{i}^{a}\right)+\frac{\partial \Delta \overline{\mathbf{v}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \delta \mathbf{b}_{i}^{g}+\frac{\partial \Delta \overline{\mathbf{v}}_{i j}}{\partial \overline{\mathbf{b}}^{a}} \delta \mathbf{b}_{i}^{a}\right] \\ & \triangleq \Delta \mathbf{v}_{i j}-\Delta \hat{\mathbf{v}}_{i j} \\ \mathbf{r}_{\Delta \mathbf{p}_{i j}} & \triangleq \mathbf{R}_{i}^{T}\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\left[\Delta \tilde{\mathbf{p}}_{i j}\left(\overline{\mathbf{b}}_{i}^{g}, \overline{\mathbf{b}}_{i}^{a}\right)+\frac{\partial \Delta \overline{\mathbf{p}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \delta \mathbf{b}_{i}^{g}+\frac{\partial \Delta \overline{\mathbf{p}}_{i j}}{\partial \overline{\mathbf{b}}^{a}} \delta \mathbf{b}_{i}^{a}\right] \\ & \triangleq \Delta \mathbf{p}_{i j}-\Delta \hat{\mathbf{p}}_{i j} \end{aligned} rΔRijrΔvijrΔpijlog{[ΔR~ij(big)Exp(bgΔRijδbig)]TRiTRj}log[(ΔR^ij)TΔRij]RiT(vjvigΔtij)[Δv~ij(big,bia)+bgΔvijδbig+baΔvijδbia]ΔvijΔv^ijRiT(pjpiviΔtij21gΔtij2)[Δp~ij(big,bia)+bgΔpijδbig+baΔpijδbia]ΔpijΔp^ij

r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij

  • r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij关于 δ ϕ ⃗ i \delta \vec{\phi}_{i} δϕ i的jacobian
    r Δ R i j ( R i Exp ⁡ ( δ ϕ ⃗ i ) ) = log ⁡ [ ( Δ R ^ i j ) T ( R i Exp ⁡ ( δ ϕ ⃗ i ) ) T R j ] = ( 1 ) log ⁡ [ ( Δ R ^ i j ) T Exp ⁡ ( − δ ϕ ⃗ i ) R i T R j ] = 2 log ⁡ [ ( Δ R ^ i j ) T R i T R j Exp ⁡ ( − R j T R i δ ϕ ⃗ i ) ] = log ⁡ { Exp ⁡ [ log ⁡ ( ( Δ R ^ i j ) T R i T R j ) ] ⋅ Exp ⁡ ( − R j T R i δ ϕ ⃗ ) } = log ⁡ [ Exp ⁡ ( r Δ R i j ( R i ) ) ⋅ Exp ⁡ ( − R j T R i δ ϕ ⃗ i ) ] ≈ 3 r Δ R i j ( R i ) − J r − 1 ( r Δ R i j ( R i ) ) R j T R i δ ϕ ⃗ i = 4 r Δ R i j − J r − 1 ( r Δ R i j ) R j T R i δ ϕ ⃗ i \begin{aligned} \mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\mathbf{R}_{i} \operatorname{Exp}\left(\delta \vec{\phi}_{i}\right)\right) & =\log \left[\left(\Delta \hat{\mathbf{R}}_{i j}\right)^{T}\left(\mathbf{R}_{i} \operatorname{Exp}\left(\delta \vec{\phi}_{i}\right)\right)^{T} \mathbf{R}_{j}\right] \\ & \stackrel{(1)}{=} \log \left[\left(\Delta \hat{\mathbf{R}}_{i j}\right)^{T} \operatorname{Exp}\left(-\delta \vec{\phi}_{i}\right) \mathbf{R}_{i}^{T} \mathbf{R}_{j}\right] \\ & \stackrel{2}{=} \log \left[\left(\Delta \hat{\mathbf{R}}_{i j}\right)^{T} \mathbf{R}_{i}^{T} \mathbf{R}_{j} \operatorname{Exp}\left(-\mathbf{R}_{j}^{T} \mathbf{R}_{i} \delta \vec{\phi}_{i}\right)\right] \\ & =\log \left\{\operatorname{Exp}\left[\log \left(\left(\Delta \hat{\mathbf{R}}_{i j}\right)^{T} \mathbf{R}_{i}^{T} \mathbf{R}_{j}\right)\right] \cdot \operatorname{Exp}\left(-\mathbf{R}_{j}^{T} \mathbf{R}_{i} \delta \vec{\phi}\right)\right\} \\ & =\log \left[\operatorname{Exp}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\mathbf{R}_{i}\right)\right) \cdot \operatorname{Exp}\left(-\mathbf{R}_{j}^{T} \mathbf{R}_{i} \delta \vec{\phi}_{i}\right)\right] \\ & \stackrel{3}{\approx} \mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\mathbf{R}_{i}\right)-\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\mathbf{R}_{i}\right)\right) \mathbf{R}_{j}^{T} \mathbf{R}_{i} \delta \vec{\phi}_{i} \\ & \stackrel{4}{=} \mathbf{r}_{\Delta \mathbf{R}_{i j}}-\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\right) \mathbf{R}_{j}^{T} \mathbf{R}_{i} \delta \vec{\phi}_{i} \end{aligned} rΔRij(RiExp(δϕ i))=log[(ΔR^ij)T(RiExp(δϕ i))TRj]=(1)log[(ΔR^ij)TExp(δϕ i)RiTRj]=2log[(ΔR^ij)TRiTRjExp(RjTRiδϕ i)]=log{Exp[log((ΔR^ij)TRiTRj)]Exp(RjTRiδϕ )}=log[Exp(rΔRij(Ri))Exp(RjTRiδϕ i)]3rΔRij(Ri)Jr1(rΔRij(Ri))RjTRiδϕ i=4rΔRijJr1(rΔRij)RjTRiδϕ i
    可以得到:
    ∂ r Δ R i j ∂ δ ϕ ⃗ i = − J r − 1 ( r Δ R i j ) R j T R i \frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \vec{\phi}_{i}}=-\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\right) \mathbf{R}_{j}^{T} \mathbf{R}_{i} δϕ irΔRij=Jr1(rΔRij)RjTRi

  • r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij关于 δ ϕ ⃗ j \delta \vec{\phi}_{j} δϕ j的jacobian
    r Δ R i j ( R j Exp ⁡ ( δ ϕ ⃗ j ) ) = log ⁡ [ ( Δ R ^ i j ) T R i T R j Exp ⁡ ( δ ϕ ⃗ j ) ] = log ⁡ { Exp ⁡ [ log ⁡ ( ( Δ R ^ i j ) T R i T R j ) ] ⋅ Exp ⁡ ( δ ϕ ⃗ j ) } = log ⁡ { Exp ⁡ ( r Δ R i j ( R j ) ) ⋅ Exp ⁡ ( δ ϕ ⃗ j ) } ≈ ( 1 ) r Δ R i j ( R j ) + J r − 1 ( r Δ R i j ( R j ) ) δ ϕ ⃗ j = 2 r Δ R i j + J r − 1 ( r Δ R i j ) δ ϕ ⃗ j \begin{aligned} \mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\mathbf{R}_{j} \operatorname{Exp}\left(\delta \vec{\phi}_{j}\right)\right) & =\log \left[\left(\Delta \hat{\mathbf{R}}_{i j}\right)^{T} \mathbf{R}_{i}^{T} \mathbf{R}_{j} \operatorname{Exp}\left(\delta \vec{\phi}_{j}\right)\right] \\ & =\log \left\{\operatorname{Exp}\left[\log \left(\left(\Delta \hat{\mathbf{R}}_{i j}\right)^{T} \mathbf{R}_{i}^{T} \mathbf{R}_{j}\right)\right] \cdot \operatorname{Exp}\left(\delta \vec{\phi}_{j}\right)\right\} \\ & =\log \left\{\operatorname{Exp}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\mathbf{R}_{j}\right)\right) \cdot \operatorname{Exp}\left(\delta \vec{\phi}_{j}\right)\right\} \\ & \stackrel{(1)}{\approx} \mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\mathbf{R}_{j}\right)+\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\mathbf{R}_{j}\right)\right) \delta \vec{\phi}_{j} \\ & \stackrel{2}{=} \mathbf{r}_{\Delta \mathbf{R}_{i j}}+\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\right) \delta \vec{\phi}_{j} \end{aligned} rΔRij(RjExp(δϕ j))=log[(ΔR^ij)TRiTRjExp(δϕ j)]=log{Exp[log((ΔR^ij)TRiTRj)]Exp(δϕ j)}=log{Exp(rΔRij(Rj))Exp(δϕ j)}(1)rΔRij(Rj)+Jr1(rΔRij(Rj))δϕ j=2rΔRij+Jr1(rΔRij)δϕ j
    可以得到:
    ∂ r Δ R i j ∂ δ ϕ ⃗ j = J r − 1 ( r Δ R i j ) \frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \vec{\phi}_{j}}=\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\right) δϕ jrΔRij=Jr1(rΔRij)

  • r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij关于 δ p i \delta p_{i} δpi的jacobian
    ∂ r Δ R i j ∂ δ p i = ∂ r Δ R i j ∂ p i = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \mathbf{p}_{i}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \mathbf{p}_{i}}=\mathbf{0} δpirΔRij=pirΔRij=0

  • r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij关于 δ p j \delta p_{j} δpj的jacobian
    ∂ r Δ R i j ∂ δ p j = ∂ r Δ R i j ∂ p j = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \mathbf{p}_{j}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \mathbf{p}_{j}}=\mathbf{0} δpjrΔRij=pjrΔRij=0

  • r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij关于 δ v i \delta v_{i} δvi的jacobian
    ∂ r Δ R i j ∂ δ v i = ∂ r Δ R i j ∂ v i = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \mathbf{v}_{i}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \mathbf{v}_{i}}=\mathbf{0} δvirΔRij=virΔRij=0

  • r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij关于 δ v j \delta v_{j} δvj的jacobian
    ∂ r Δ R i j ∂ δ v j = ∂ r Δ R i j ∂ v j = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \mathbf{v}_{j}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \mathbf{v}_{j}}=\mathbf{0} δvjrΔRij=vjrΔRij=0

  • r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij关于 δ b i a \delta \mathbf{b}_{i}^{a} δbia的jacobian
    ∂ r Δ R i j ∂ δ b i a = ∂ r Δ R i j ∂ δ b i a = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \mathbf{b}_{i}^{a}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \mathbf{b}_{i}^{a}}=\mathbf{0} δbiarΔRij=δbiarΔRij=0

  • r Δ R i j \mathbf{r}_{\Delta \mathbf{R}_{i j}} rΔRij关于 δ b i g \delta \mathbf{b}_{i}^{g} δbig的jacobian
    r Δ R i j ( δ b i g + δ b i g ~ ) = log ⁡ { [ Δ R ~ i j ( b ‾ i g ) Exp ⁡ ( ∂ Δ R ‾ i j ∂ b ‾ g ( δ b i g + δ b i g ~ ) ) ] T R i T R j } ≈ ( 1 ) log ⁡ { [ Δ R ~ i j ( b ‾ i g ) Exp ⁡ ( ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ) Exp ⁡ ( J r ( ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ) ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ~ ) ] T Δ R i j } = ( 2 ) log ⁡ { [ Δ R ^ i j ⋅ Exp ⁡ ( ε ⋅ ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ^ ) ] T Δ R i j } = ( 3 ) log ⁡ [ Exp ⁡ ( − ε ⋅ ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ~ ) Δ R ^ i j T Δ R i j ] = log ⁡ [ Exp ⁡ ( − ε ⋅ ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ~ ) Exp ⁡ ( log ⁡ ( Δ R ^ i j T Δ R i j ) ) ] = log ⁡ [ Exp ⁡ ( − ε ⋅ ∂ Δ R ‾ i j δ b ‾ i g ~ ∂ b ‾ g ) Exp ⁡ ( r Δ R i j ( δ b i g ) ) ] = ( 4 ) log ⁡ { Exp ⁡ ( r Δ R i j ( δ b i g ) ) Exp ⁡ [ − Exp ⁡ ( − r Δ R i j ( δ b i g ) ) ⋅ ε ⋅ ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ~ ] } ≈ ( 5 ) r Δ R i j ( δ b i g ) − J r − 1 ( r Δ R i j ( δ b i g ) ) ⋅ Exp ⁡ ( − r Δ R i j ( δ b i g ) ) ⋅ ε ⋅ ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ~ = ( 6 ) r Δ R i j − J r − 1 ( r Δ R i j ) ⋅ Exp ⁡ ( − r Δ R i j ) ⋅ J r ( ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ) ⋅ ∂ Δ R ‾ i j ∂ b ‾ g ⋅ δ b i g ~ \begin{array}{l} \mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\delta \mathbf{b}_{i}^{g}+\widetilde{\delta \mathbf{b}_{i}^{g}}\right)=\log \left\{\left[\Delta \tilde{\mathbf{R}}_{i j}\left(\overline{\mathbf{b}}_{i}^{g}\right) \operatorname{Exp}\left(\frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}}\left(\delta \mathbf{b}_{i}^{g}+\widetilde{\delta \mathbf{b}_{i}^{g}}\right)\right)\right]^{T} \mathbf{R}_{i}^{T} \mathbf{R}_{j}\right\} \\ \stackrel{(1)}{\approx} \log \left\{\left[\Delta \tilde{\mathbf{R}}_{i j}\left(\overline{\mathbf{b}}_{i}^{g}\right) \operatorname{Exp}\left(\frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \delta \mathbf{b}_{i}^{g}\right) \operatorname{Exp}\left(\mathbf{J}_{r}\left(\frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \delta \mathbf{b}_{i}^{g}\right) \frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \widetilde{\delta \mathbf{b}_{i}^{g}}\right)\right]^{T} \Delta \mathbf{R}_{i j}\right\} \\ \stackrel{(2)}{=} \log \left\{\left[\Delta \hat{\mathbf{R}}_{i j} \cdot \operatorname{Exp}\left(\boldsymbol{\varepsilon} \cdot \frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \widehat{\delta \mathbf{b}_{i}^{g}}\right)\right]^{T} \Delta \mathbf{R}_{i j}\right\} \\ \stackrel{(3)}{=} \log \left[\operatorname{Exp}\left(-\boldsymbol{\varepsilon} \cdot \frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \widetilde{\delta \mathbf{b}_{i}^{g}}\right) \Delta \hat{\mathbf{R}}_{i j}^{T} \Delta \mathbf{R}_{i j}\right] \\ =\log \left[\operatorname{Exp}\left(-\boldsymbol{\varepsilon} \cdot \frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \widetilde{\delta \mathbf{b}_{i}^{g}}\right) \operatorname{Exp}\left(\log \left(\Delta \hat{\mathbf{R}}_{i j}^{T} \Delta \mathbf{R}_{i j}\right)\right)\right] \\ =\log \left[\operatorname{Exp}\left(-\boldsymbol{\varepsilon} \cdot \frac{\partial \Delta \overline{\mathbf{R}}_{i j} \widetilde{\delta \overline{\mathbf{b}}_{i}^{g}}}{\partial \overline{\mathbf{b}}^{g}}\right) \operatorname{Exp}\left(\mathbf{r}_{\Delta \mathbb{R}_{i j}}\left(\delta \mathbf{b}_{i}^{g}\right)\right)\right] \\ \stackrel{(4)}{=} \log \left\{\operatorname{Exp}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\delta \mathbf{b}_{i}^{g}\right)\right) \operatorname{Exp}\left[-\operatorname{Exp}\left(-\mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\delta \mathbf{b}_{i}^{g}\right)\right) \cdot \varepsilon \cdot \frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \widetilde{\delta \mathbf{b}_{i}^{g}}\right]\right\} \\ \stackrel{(5)}{\approx} \mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\delta \mathbf{b}_{i}^{g}\right)-\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\delta \mathbf{b}_{i}^{g}\right)\right) \cdot \operatorname{Exp}\left(-\mathbf{r}_{\Delta \mathbf{R}_{i j}}\left(\delta \mathbf{b}_{i}^{g}\right)\right) \cdot \boldsymbol{\varepsilon} \cdot \frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \widetilde{\delta \mathbf{b}_{i}^{g}} \\ \stackrel{(6)}{=} \mathbf{r}_{\Delta \mathbf{R}_{i j}}-\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbb{R}_{i j}}\right) \cdot \operatorname{Exp}\left(-\mathbf{r}_{\Delta \mathbf{R}_{i j}}\right) \cdot \mathbf{J}_{r}\left(\frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \delta \mathbf{b}_{i}^{g}\right) \cdot \frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \cdot \widetilde{\delta \mathbf{b}_{i}^{g}} \\ \end{array} rΔRij(δbig+δbig )=log{[ΔR~ij(big)Exp(bgΔRij(δbig+δbig ))]TRiTRj}(1)log{[ΔR~ij(big)Exp(bgΔRijδbig)Exp(Jr(bgΔRijδbig)bgΔRijδbig )]TΔRij}=(2)log{[ΔR^ijExp(εbgΔRijδbig )]TΔRij}=(3)log[Exp(εbgΔRijδbig )ΔR^ijTΔRij]=log[Exp(εbgΔRijδbig )Exp(log(ΔR^ijTΔRij))]=log[Exp(εbgΔRijδbig )Exp(rΔRij(δbig))]=(4)log{Exp(rΔRij(δbig))Exp[Exp(rΔRij(δbig))εbgΔRijδbig ]}(5)rΔRij(δbig)Jr1(rΔRij(δbig))Exp(rΔRij(δbig))εbgΔRijδbig =(6)rΔRijJr1(rΔRij)Exp(rΔRij)Jr(bgΔRijδbig)bgΔRijδbig
    可以得到:
    ∂ r Δ R i j ∂ δ b i g ~ = ∂ r Δ R i j ∂ δ b i g = − J r − 1 ( r Δ R i j ) ⋅ Exp ⁡ ( − r Δ R i j ) ⋅ J r ( ∂ Δ R ‾ i j ∂ b ‾ g δ b i g ) ⋅ ∂ Δ R ‾ i j ∂ b ‾ g \frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \widetilde{\delta \mathbf{b}_{i}^{g}}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{i j}}}{\partial \delta \mathbf{b}_{i}^{g}}=-\mathbf{J}_{r}^{-1}\left(\mathbf{r}_{\Delta \mathbf{R}_{i j}}\right) \cdot \operatorname{Exp}\left(-\mathbf{r}_{\Delta \mathbf{R}_{i j}}\right) \cdot \mathbf{J}_{r}\left(\frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} \delta \mathbf{b}_{i}^{g}\right) \cdot \frac{\partial \Delta \overline{\mathbf{R}}_{i j}}{\partial \overline{\mathbf{b}}^{g}} δbig rΔRij=δbigrΔRij=Jr1(rΔRij)Exp(rΔRij)Jr(bgΔRijδbig)bgΔRij

r Δ v i j \mathbf{r}_{\Delta \mathbf{v}_{i j}} rΔvij

  • r Δ v i j \mathbf{r}_{\Delta \mathbf{v}_{i j}} rΔvij关于 δ ϕ ⃗ i \delta \vec{\phi}_{i} δϕ i的jacobian
    r Δ v i j ( R i Exp ⁡ ( δ ϕ ⃗ i ) ) = ( R i Exp ⁡ ( δ ϕ ⃗ i ) ) T ( v j − v i − g ⋅ Δ t i j ) − Δ v ^ i j = ( 1 ) Exp ⁡ ( − δ ϕ i → ) ⋅ R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) − Δ v ^ i j ≈ ( 2 ) ( I − ( δ ϕ ⃗ i ) ∧ ) ⋅ R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) − Δ v ^ i j = R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) − Δ v ^ i j − ( δ ϕ ⃗ i ) ∧ ⋅ R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) = ( 3 ) r Δ v i j ( R i ) + [ R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) ] ∧ ⋅ δ ϕ ⃗ i = ( 4 ) r Δ v i j + [ R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) ] ∧ ⋅ δ ϕ ⃗ i \begin{aligned} \mathbf{r}_{\Delta \mathbf{v}_{i j}}\left(\mathbf{R}_{i} \operatorname{Exp}\left(\delta \vec{\phi}_{i}\right)\right) & =\left(\mathbf{R}_{i} \operatorname{Exp}\left(\delta \vec{\phi}_{i}\right)\right)^{T}\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\Delta \hat{\mathbf{v}}_{i j} \\ & \stackrel{(1)}{=} \operatorname{Exp}\left(-\delta \overrightarrow{\phi_{i}}\right) \cdot \mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\Delta \hat{\mathbf{v}}_{i j} \\ & \stackrel{(2)}{\approx}\left(\mathbf{I}-\left(\delta \vec{\phi}_{i}\right)^{\wedge}\right) \cdot \mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\Delta \hat{\mathbf{v}}_{i j} \\ & =\mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\Delta \hat{\mathbf{v}}_{i j}-\left(\delta \vec{\phi}_{i}\right)^{\wedge} \cdot \mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right) \\ & \stackrel{(3)}{=} \mathbf{r}_{\Delta \mathbf{v}_{i j}}\left(\mathbf{R}_{i}\right)+\left[\mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)\right]^{\wedge} \cdot \delta \vec{\phi}_{i} \\ & \stackrel{(4)}{=} \mathbf{r}_{\Delta \mathbf{v}_{i j}}+\left[\mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)\right]^{\wedge} \cdot \delta \vec{\phi}_{i} \end{aligned} rΔvij(RiExp(δϕ i))=(RiExp(δϕ i))T(vjvigΔtij)Δv^ij=(1)Exp(δϕi )RiT(vjvigΔtij)Δv^ij(2)(I(δϕ i))RiT(vjvigΔtij)Δv^ij=RiT(vjvigΔtij)Δv^ij(δϕ i)RiT(vjvigΔtij)=(3)rΔvij(Ri)+[RiT(vjvigΔtij)]δϕ i=(4)rΔvij+[RiT(vjvigΔtij)]δϕ i
    可以得到:
    ∂ r Δ v i j ∂ δ ϕ ⃗ i = [ R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) ] ∧ \frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \delta \vec{\phi}_{i}}=\left[\mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)\right]^{\wedge} δϕ irΔvij=[RiT(vjvigΔtij)]
  • r Δ v i j \mathbf{r}_{\Delta \mathbf{v}_{i j}} rΔvij关于 δ ϕ ⃗ j \delta \vec{\phi}_{j} δϕ j的jacobian
    ∂ r Δ v i j ∂ δ ϕ ⃗ j = 0 \frac{\partial \mathbf{r}_{\Delta v_{ij}}}{\partial \delta \vec{\phi}_{j}}=\mathbf{0} δϕ jrΔvij=0
  • r Δ v i j \mathbf{r}_{\Delta \mathbf{v}_{i j}} rΔvij关于 δ p i \delta p_{i} δpi的jacobian
    ∂ r Δ v i j ∂ δ p i = ∂ r Δ v i j ∂ p i = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \delta \mathbf{p}_{i}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \mathbf{p}_{i}}=\mathbf{0} δpirΔvij=pirΔvij=0
  • r Δ v i j \mathbf{r}_{\Delta \mathbf{v}_{i j}} rΔvij关于 δ p j \delta p_{j} δpj的jacobian
    ∂ r Δ v i j ∂ δ p j = ∂ r Δ v i j ∂ p j = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \delta \mathbf{p}_{j}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \mathbf{p}_{j}}=\mathbf{0} δpjrΔvij=pjrΔvij=0
  • r Δ v i j \mathbf{r}_{\Delta \mathbf{v}_{i j}} rΔvij关于 δ v i \delta v_{i} δvi的jacobian
    r Δ v i j ( v i + δ v i ) = R i T ⋅ ( v j − v i − δ v i − g ⋅ Δ t i j ) − Δ v ^ i j = R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) − Δ v ^ i j − R i T δ v i = r Δ v i j ( v i ) − R i T δ v i 11 = r Δ v i j − R i T δ v i \begin{aligned} \mathbf{r}_{\Delta \mathbf{v}_{i j}}\left(\mathbf{v}_{i}+\delta \mathbf{v}_{i}\right) & =\mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\delta \mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\Delta \hat{\mathbf{v}}_{i j} \\ & =\mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\Delta \hat{\mathbf{v}}_{i j}-\mathbf{R}_{i}^{T} \delta \mathbf{v}_{i} \\ & =\mathbf{r}_{\Delta \mathbf{v}_{i j}}\left(\mathbf{v}_{i}\right)-\mathbf{R}_{i}^{T} \delta \mathbf{v}_{i} \\ & \stackrel{11}{ }=\mathbf{r}_{\Delta \mathbf{v}_{i j}}-\mathbf{R}_{i}^{T} \delta \mathbf{v}_{i} \end{aligned} rΔvij(vi+δvi)=RiT(vjviδvigΔtij)Δv^ij=RiT(vjvigΔtij)Δv^ijRiTδvi=rΔvij(vi)RiTδvi11=rΔvijRiTδvi
    可以得到:
    ∂ r Δ v i j ∂ δ v i = ∂ r Δ v i j ∂ v i = − R i T \frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \delta \mathbf{v}_{i}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \mathbf{v}_{i}}=-\mathbf{R}_{i}^{T} δvirΔvij=virΔvij=RiT
  • r Δ v i j \mathbf{r}_{\Delta \mathbf{v}_{i j}} rΔvij关于 δ v j \delta v_{j} δvj的jacobian
    r Δ v i j ( v j + δ v j ) = R i T ⋅ ( v j + δ v j − v i − g ⋅ Δ t i j ) − Δ v ^ i j = R i T ⋅ ( v j − v i − g ⋅ Δ t i j ) − Δ v ^ i j + R i T δ v j = r Δ v i j ( v j ) + R i T δ v j = r Δ v i j + R i T δ v j \begin{aligned} \mathbf{r}_{\Delta \mathbf{v}_{i j}}\left(\mathbf{v}_{j}+\delta \mathbf{v}_{j}\right) & =\mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}+\delta \mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\Delta \hat{\mathbf{v}}_{i j} \\ & =\mathbf{R}_{i}^{T} \cdot\left(\mathbf{v}_{j}-\mathbf{v}_{i}-\mathbf{g} \cdot \Delta t_{i j}\right)-\Delta \hat{\mathbf{v}}_{i j}+\mathbf{R}_{i}^{T} \delta \mathbf{v}_{j} \\ & =\mathbf{r}_{\Delta \mathbf{v}_{i j}}\left(\mathbf{v}_{j}\right)+\mathbf{R}_{i}^{T} \delta \mathbf{v}_{j} \\ & =\mathbf{r}_{\Delta \mathbf{v}_{i j}}+\mathbf{R}_{i}^{T} \delta \mathbf{v}_{j} \end{aligned} rΔvij(vj+δvj)=RiT(vj+δvjvigΔtij)Δv^ij=RiT(vjvigΔtij)Δv^ij+RiTδvj=rΔvij(vj)+RiTδvj=rΔvij+RiTδvj
    可以得到:
    ∂ r Δ v i j ∂ δ v j = ∂ r Δ v i j ∂ v j = R i T \frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \delta \mathbf{v}_{j}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \mathbf{v}_{j}}=\mathbf{R}_{i}^{T} δvjrΔvij=vjrΔvij=RiT
  • r Δ v i j \mathbf{r}_{\Delta \mathbf{v}_{i j}} rΔvij关于 δ b i a \delta \mathbf{b}_{i}^{a} δbia的jacobian
    ∂ r Δ v i j ∂ δ b i g ~ = ∂ r Δ v i j ∂ δ b i g = − ∂ Δ v ‾ i j ∂ b g \frac{\partial \mathbf{r}_{\Delta v_{i j}}}{\partial \widetilde{\delta \mathbf{b}_{i}^{\mathrm{g}}}}=\frac{\partial \mathbf{r}_{\Delta v_{i j}}}{\partial \delta \mathbf{b}_{i}^{\mathrm{g}}}=-\frac{\partial \Delta \overline{\mathbf{v}}_{i j}}{\partial \mathbf{b}^{g}} δbig rΔvij=δbigrΔvij=bgΔvij
  • r Δ v i j \mathbf{r}_{\Delta \mathbf{v}_{i j}} rΔvij关于 δ b i g \delta \mathbf{b}_{i}^{g} δbig的jacobian
    ∂ r Δ v i j ∂ δ b i a ~ = ∂ r Δ v i j ∂ δ b i a = − ∂ Δ v ‾ i j ∂ b a \frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \widetilde{\delta \mathbf{b}_{i}^{\mathrm{a}}}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{i j}}}{\partial \delta \mathbf{b}_{i}^{\mathrm{a}}}=-\frac{\partial \Delta \overline{\mathbf{v}}_{i j}}{\partial \mathbf{b}^{a}} δbia rΔvij=δbiarΔvij=baΔvij

r Δ p i j \mathbf{r}_{\Delta \mathbf{p}_{i j}} rΔpij

  • r Δ p i j \mathbf{r}_{\Delta \mathbf{p}_{i j}} rΔpij关于 δ ϕ ⃗ i \delta \vec{\phi}_{i} δϕ i的jacobian
    r Δ p p ( R i Exp ⁡ ( δ ϕ i → ) ) = ( R i Exp ⁡ ( δ ϕ ⃗ i ) ) T ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j = ( 1 ) Exp ⁡ ( − δ ϕ ⃗ i ) ⋅ R i T ⋅ ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j ( 2 ) ( I − ( δ ϕ ⃗ i ) ∧ ) ⋅ R i T ⋅ ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j = R i T ⋅ ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j − ( δ ϕ ⃗ i ) ∧ R i T ⋅ ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) = ( 3 ) r Δ p y j ( R i ) + [ R i T ⋅ ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) ] ∧ ⋅ δ ϕ ⃗ i = ( 4 ) r Δ p y + [ R i T ⋅ ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) ] ⋅ δ ϕ ⃗ i \begin{aligned} \mathbf{r}_{\Delta \mathbf{p}_{\mathrm{p}}}\left(\mathbf{R}_{i} \operatorname{Exp}\left(\delta \overrightarrow{\phi_{i}}\right)\right) & =\left(\mathbf{R}_{i} \operatorname{Exp}\left(\delta \vec{\phi}_{i}\right)\right)^{T}\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j} \\ & \stackrel{(1)}{=} \operatorname{Exp}\left(-\delta \vec{\phi}_{i}\right) \cdot \mathbf{R}_{i}^{T} \cdot\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j} \\ & \stackrel{(2)}{ }\left(\mathbf{I}-\left(\delta \vec{\phi}_{i}\right)^{\wedge}\right) \cdot \mathbf{R}_{i}^{T} \cdot\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j} \\ & =\mathbf{R}_{i}^{T} \cdot\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j}-\left(\delta \vec{\phi}_{i}\right)^{\wedge} \mathbf{R}_{i}^{T} \cdot\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right) \\ & \stackrel{(3)}{=} \mathbf{r}_{\Delta \mathbf{p}_{y j}}\left(\mathbf{R}_{i}\right)+\left[\mathbf{R}_{i}^{T} \cdot\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)\right]^{\wedge} \cdot \delta \vec{\phi}_{i} \\ & \stackrel{(4)}{=} \mathbf{r}_{\Delta \mathbf{p}_{y}}+\left[\mathbf{R}_{i}^{T} \cdot\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)\right] \cdot \delta \vec{\phi}_{i} \end{aligned} rΔpp(RiExp(δϕi ))=(RiExp(δϕ i))T(pjpiviΔtij21gΔtij2)Δp^ij=(1)Exp(δϕ i)RiT(pjpiviΔtij21gΔtij2)Δp^ij(2)(I(δϕ i))RiT(pjpiviΔtij21gΔtij2)Δp^ij=RiT(pjpiviΔtij21gΔtij2)Δp^ij(δϕ i)RiT(pjpiviΔtij21gΔtij2)=(3)rΔpyj(Ri)+[RiT(pjpiviΔtij21gΔtij2)]δϕ i=(4)rΔpy+[RiT(pjpiviΔtij21gΔtij2)]δϕ i
    可以得到:
    ∂ r Δ p i j ∂ δ ϕ i → = [ R i T ⋅ ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) ] ∧ \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \delta \overrightarrow{\phi_{i}}}=\left[\mathbf{R}_{i}^{T} \cdot\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)\right]^{\wedge} δϕi rΔpij=[RiT(pjpiviΔtij21gΔtij2)]
  • r Δ p i j \mathbf{r}_{\Delta \mathbf{p}_{i j}} rΔpij关于 δ ϕ ⃗ j \delta \vec{\phi}_{j} δϕ j的jacobian
    ∂ r Δ p i j ∂ δ ϕ ⃗ j = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \delta \vec{\phi}_{j}}=\mathbf{0} δϕ jrΔpij=0
  • r Δ p i j \mathbf{r}_{\Delta \mathbf{p}_{i j}} rΔpij关于 δ p i \delta p_{i} δpi的jacobian
    r Δ p i j ( p i + R i ⋅ δ p i ) = R i T ( p j − p i − R i ⋅ δ p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j = R i T ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j − I ⋅ δ p i = r Δ p i j ( p i ) − I ⋅ δ p i 1 = r Δ p i j − I ⋅ δ p i \begin{aligned} \mathbf{r}_{\Delta \mathbf{p}_{i j}}\left(\mathbf{p}_{i}+\mathbf{R}_{i} \cdot \delta \mathbf{p}_{i}\right) & =\mathbf{R}_{i}^{T}\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{R}_{i} \cdot \delta \mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j} \\ & =\mathbf{R}_{i}^{T}\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j}-\mathbf{I} \cdot \delta \mathbf{p}_{i} \\ & =\mathbf{r}_{\Delta \mathbf{p}_{i j}}\left(\mathbf{p}_{i}\right)-\mathbf{I} \cdot \delta \mathbf{p}_{i} \\ & \stackrel{1}{ } \\ & =\mathbf{r}_{\Delta \mathbf{p}_{i j}}-\mathbf{I} \cdot \delta \mathbf{p}_{i} \end{aligned} rΔpij(pi+Riδpi)=RiT(pjpiRiδpiviΔtij21gΔtij2)Δp^ij=RiT(pjpiviΔtij21gΔtij2)Δp^ijIδpi=rΔpij(pi)Iδpi1=rΔpijIδpi
  • r Δ p i j \mathbf{r}_{\Delta \mathbf{p}_{i j}} rΔpij关于 δ p j \delta p_{j} δpj的jacobian
    r Δ p i j ( p j + R j ⋅ δ p j ) = R i T ( p j + R j ⋅ δ p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j = R i T ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j + R i T R j ⋅ δ p j = r Δ p i j ( p j ) + R i T R j ⋅ δ p j = ( 1 ) r Δ p i j + R i T R j ⋅ δ p j \begin{aligned} \mathbf{r}_{\Delta \mathbf{p}_{i j}}\left(\mathbf{p}_{j}+\mathbf{R}_{j} \cdot \delta \mathbf{p}_{j}\right) & =\mathbf{R}_{i}^{T}\left(\mathbf{p}_{j}+\mathbf{R}_{j} \cdot \delta \mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j} \\ & =\mathbf{R}_{i}^{T}\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j}+\mathbf{R}_{i}^{T} \mathbf{R}_{j} \cdot \delta \mathbf{p}_{j} \\ & =\mathbf{r}_{\Delta \mathbf{p}_{i j}}\left(\mathbf{p}_{j}\right)+\mathbf{R}_{i}^{T} \mathbf{R}_{j} \cdot \delta \mathbf{p}_{j} \\ & \stackrel{(1)}{=} \mathbf{r}_{\Delta \mathbf{p}_{i j}}+\mathbf{R}_{i}^{T} \mathbf{R}_{j} \cdot \delta \mathbf{p}_{j} \end{aligned} rΔpij(pj+Rjδpj)=RiT(pj+RjδpjpiviΔtij21gΔtij2)Δp^ij=RiT(pjpiviΔtij21gΔtij2)Δp^ij+RiTRjδpj=rΔpij(pj)+RiTRjδpj=(1)rΔpij+RiTRjδpj
    可以得到:
    ∂ r Δ p i j ∂ δ p j = ∂ r Δ p i j ∂ p j = R i T R j \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \delta \mathbf{p}_{j}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \mathbf{p}_{j}}=\mathbf{R}_{i}^{T} \mathbf{R}_{j} δpjrΔpij=pjrΔpij=RiTRj
  • r Δ p i j \mathbf{r}_{\Delta \mathbf{p}_{i j}} rΔpij关于 δ v i \delta v_{i} δvi的jacobian
    r Δ p i j ( v i + δ v i ) = R i T ( p j − p i − v i ⋅ Δ t i j − δ v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j = R i T ( p j − p i − v i ⋅ Δ t i j − 1 2 g ⋅ Δ t i j 2 ) − Δ p ^ i j − R i T Δ t i j ⋅ δ v i = r Δ p i j ( v i ) − R i T Δ t i j ⋅ δ v i ( 1 ) = r Δ p i j − R i T Δ t i j ⋅ δ v i \begin{aligned} \mathbf{r}_{\Delta \mathbf{p}_{i j}}\left(\mathbf{v}_{i}+\delta \mathbf{v}_{i}\right) & =\mathbf{R}_{i}^{T}\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\delta \mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j} \\ & =\mathbf{R}_{i}^{T}\left(\mathbf{p}_{j}-\mathbf{p}_{i}-\mathbf{v}_{i} \cdot \Delta t_{i j}-\frac{1}{2} \mathbf{g} \cdot \Delta t_{i j}^{2}\right)-\Delta \hat{\mathbf{p}}_{i j}-\mathbf{R}_{i}^{T} \Delta t_{i j} \cdot \delta \mathbf{v}_{i} \\ & =\mathbf{r}_{\Delta \mathbf{p}_{i j}}\left(\mathbf{v}_{i}\right)-\mathbf{R}_{i}^{T} \Delta t_{i j} \cdot \delta \mathbf{v}_{i} \\ & \stackrel{(1)}{ } \\ & =\mathbf{r}_{\Delta \mathbf{p}_{i j}}-\mathbf{R}_{i}^{T} \Delta t_{i j} \cdot \delta \mathbf{v}_{i} \end{aligned} rΔpij(vi+δvi)=RiT(pjpiviΔtijδviΔtij21gΔtij2)Δp^ij=RiT(pjpiviΔtij21gΔtij2)Δp^ijRiTΔtijδvi=rΔpij(vi)RiTΔtijδvi(1)=rΔpijRiTΔtijδvi
    可以得到:
    ∂ r Δ p i j ∂ δ v i = ∂ r Δ p i j ∂ v i = − R i T Δ t i j \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \delta \mathbf{v}_{i}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \mathbf{v}_{i}}=-\mathbf{R}_{i}^{T} \Delta t_{i j} δvirΔpij=virΔpij=RiTΔtij
  • r Δ p i j \mathbf{r}_{\Delta \mathbf{p}_{i j}} rΔpij关于 δ v j \delta v_{j} δvj的jacobian

∂ r Δ p i j ∂ δ v j = ∂ r Δ p i j ∂ v j = 0 \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \delta \mathbf{v}_{j}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \mathbf{v}_{j}}=\mathbf{0} δvjrΔpij=vjrΔpij=0

  • r Δ p i j \mathbf{r}_{\Delta \mathbf{p}_{i j}} rΔpij关于 δ b i a \delta \mathbf{b}_{i}^{a} δbia的jacobian

∂ r Δ p i j ∂ δ b i g ^ = ∂ r Δ p i j ∂ δ b i g = − ∂ Δ p ‾ i j ∂ b g \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \widehat{\delta \mathbf{b}_{i}^{g}}}=\frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \delta \mathbf{b}_{i}^{g}}=-\frac{\partial \Delta \overline{\mathbf{p}}_{i j}}{\partial \mathbf{b}^{g}} δbig rΔpij=δbigrΔpij=bgΔpij

  • r Δ p i j \mathbf{r}_{\Delta \mathbf{p}_{i j}} rΔpij关于 δ b i g \delta \mathbf{b}_{i}^{g} δbig的jacobian

∂ r Δ p i j ∂ δ b i a = − ∂ Δ p ‾ i j ∂ b a \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{i j}}}{\partial \delta \mathbf{b}_{i}^{a}}=-\frac{\partial \Delta \overline{\mathbf{p}}_{i j}}{\partial \mathbf{b}^{a}} δbiarΔpij=baΔpij

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

火柴的初心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值