李宏毅《机器学习》——分类:概率生成模型

本文详细解析了盒子抽球问题,假设两个盒子各装有5个球,通过已知概率探讨从两个盒子中随机抽取一个球,抽到的是盒子1中蓝色球的概率计算过程。利用条件概率公式和全概率公式,结合贝叶斯公式,给出具体解答。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

盒子抽球问题

在这里插入图片描述

假设两个盒子,各装了5个球,还得知随机抽一个球,抽到的是盒子1的球的概率是P(B1)=2/3P(B_1) = 2/3P(B1)=2/3,是盒子2的球的概率是P(B2)=1/3P(B_2) = 1/3P(B2)=1/3。从盒子中蓝色球和绿色球的分配可以得到:在盒子1中随机抽一个球,是蓝色的概率为P(Blue∣B1)=4/5P(Blue|B_1) = 4/5P(BlueB1)=4/5,绿的的概率为P(Green∣B1)=1/5P(Green|B_1) = 1/5P(GreenB1)=1/5,同理得到盒子2的信息:在盒子1中随机抽一个球,是蓝色的概率为P(Blue∣B3)=2/5P(Blue|B_3) = 2/5P(BlueB3)=2/5,绿的的概率为P(Green∣B2)=3/5P(Green|B_2) = 3/5P(GreenB2)=3/5

求:随机从两个盒子中抽一个球,抽到的是盒子1中蓝色球的概率P(B1∣Blue)P(B_1|Blue)P(B1Blue)是多少?

根据条件独立公式,如果事件B1B_1B1:是盒子1,和事件BuleBuleBule:是蓝色球相互独立,则有:P(B1,Bule)=P(B1)P(Bule)P(B_1,Bule)=P(B_1)P(Bule)P(B1,Bule)=P(B1)P(Bule)
条件概率公式:

P(B1∣Bule)=P(Bule,B1)P(Bule) P(B_1|Bule)=\frac{P(Bule,B_1)}{P(Bule)}P(B1Bule)=P(Bule)P(Bule,B1)

P(Bule∣B1)=P(Bule,B1)P(B1)P(Bule|B_1)=\frac{P(Bule,B_1)}{P(B_1)}P(BuleB1)=P(B1)P(Bule,B1)
或者说:
P(B1∣Bule)=P(Bule∣B1)P(B1)P(Bule)P(B_1|Bule)=\frac{P(Bule|B_1)P(B_1)}{P(Bule)}P(B1Bule)=P(Bule)P(BuleB1)P(B1)

由全概率公式:
P(X)=∑kP(X∣Y=Yk)P(Yk)其中∑kP(Yk)=1P(X)=∑_{k}P(X|Y=Y_k)P(Y_k)其中∑_{k}P(Y_k)=1P(X)=kP(XY=Yk)P(Yk)kP(Yk)=1
故:P(Bule)=P(Blue∣B1)P(B1)+P(Blue∣B2)P(B2)P(Bule) = P(Blue|B1)P(B1)+P(Blue|B2)P(B2)P(Bule)=P(BlueB1)P(B1)+P(BlueB2)P(B2)

所以:
P(B1∣Bule)=P(Bule∣B1)P(B1)P(Blue∣B1)P(B1)+P(Blue∣B2)P(B2)P(B_1|Bule) = \frac{P(Bule|B_1)P(B_1)}{P(Blue|B1)P(B1)+P(Blue|B2)P(B2)}P(B1Bule)=P(BlueB1)P(B1)+P(BlueB2)P(B2)P(BuleB1)P(B1)

P(C1∣x)P(C1|x)P(C1x) 是由贝叶斯(bayes)(bayes)(bayes)公式得到的;P(x)P(x)P(x)是由全概率公式得到的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值