盒子抽球问题
假设两个盒子,各装了5个球,还得知随机抽一个球,抽到的是盒子1的球的概率是P(B1)=2/3P(B_1) = 2/3P(B1)=2/3,是盒子2的球的概率是P(B2)=1/3P(B_2) = 1/3P(B2)=1/3。从盒子中蓝色球和绿色球的分配可以得到:在盒子1中随机抽一个球,是蓝色的概率为P(Blue∣B1)=4/5P(Blue|B_1) = 4/5P(Blue∣B1)=4/5,绿的的概率为P(Green∣B1)=1/5P(Green|B_1) = 1/5P(Green∣B1)=1/5,同理得到盒子2的信息:在盒子1中随机抽一个球,是蓝色的概率为P(Blue∣B3)=2/5P(Blue|B_3) = 2/5P(Blue∣B3)=2/5,绿的的概率为P(Green∣B2)=3/5P(Green|B_2) = 3/5P(Green∣B2)=3/5。
求:随机从两个盒子中抽一个球,抽到的是盒子1中蓝色球的概率P(B1∣Blue)P(B_1|Blue)P(B1∣Blue)是多少?
根据条件独立公式,如果事件B1B_1B1:是盒子1,和事件BuleBuleBule:是蓝色球相互独立,则有:P(B1,Bule)=P(B1)P(Bule)P(B_1,Bule)=P(B_1)P(Bule)P(B1,Bule)=P(B1)P(Bule)
条件概率公式:
P(B1∣Bule)=P(Bule,B1)P(Bule) P(B_1|Bule)=\frac{P(Bule,B_1)}{P(Bule)}P(B1∣Bule)=P(Bule)P(Bule,B1)
P(Bule∣B1)=P(Bule,B1)P(B1)P(Bule|B_1)=\frac{P(Bule,B_1)}{P(B_1)}P(Bule∣B1)=P(B1)P(Bule,B1)
或者说:
P(B1∣Bule)=P(Bule∣B1)P(B1)P(Bule)P(B_1|Bule)=\frac{P(Bule|B_1)P(B_1)}{P(Bule)}P(B1∣Bule)=P(Bule)P(Bule∣B1)P(B1)
由全概率公式:
P(X)=∑kP(X∣Y=Yk)P(Yk)其中∑kP(Yk)=1P(X)=∑_{k}P(X|Y=Y_k)P(Y_k)其中∑_{k}P(Y_k)=1P(X)=k∑P(X∣Y=Yk)P(Yk)其中k∑P(Yk)=1
故:P(Bule)=P(Blue∣B1)P(B1)+P(Blue∣B2)P(B2)P(Bule) = P(Blue|B1)P(B1)+P(Blue|B2)P(B2)P(Bule)=P(Blue∣B1)P(B1)+P(Blue∣B2)P(B2)
所以:
P(B1∣Bule)=P(Bule∣B1)P(B1)P(Blue∣B1)P(B1)+P(Blue∣B2)P(B2)P(B_1|Bule) = \frac{P(Bule|B_1)P(B_1)}{P(Blue|B1)P(B1)+P(Blue|B2)P(B2)}P(B1∣Bule)=P(Blue∣B1)P(B1)+P(Blue∣B2)P(B2)P(Bule∣B1)P(B1)
P(C1∣x)P(C1|x)P(C1∣x) 是由贝叶斯(bayes)(bayes)(bayes)公式得到的;P(x)P(x)P(x)是由全概率公式得到的